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Abstract—By redefining the conventional notions of layers,
we present an alternative view on finitely wide, fully train-
able deep neural networks as stacked linear models in feature
spaces, leading to a kernel machine interpretation. Based on
this construction, we then propose a provably optimal modular
learning framework for classification, avoiding between-module
backpropagation. This modular training approach brings new
insights into the label requirement of deep learning: It leverages
weak pairwise labels when learning the hidden modules. When
training the output module, on the other hand, it requires full
supervision but achieves high label efficiency, needing as few as
10 randomly selected labeled examples (one from each class)
to achieve 94.88% accuracy on CIFAR-10 using a ResNet-18
backbone. Moreover, modular training enables fully modularized
deep learning workflows, which then simplify the design and
implementation of pipelines and improve the maintainability and
reusability of models. To showcase the advantages of such a
modularized workflow, we describe a simple yet reliable method
for estimating reusability of pre-trained modules as well as
task transferability in a transfer learning setting. At practically
no computation overhead, it precisely described the task space
structure of 15 binary classification tasks from CIFAR-10.

Index Terms—Kernel methods, deep learning, neural networks,
modular training, task transferability

I. INTRODUCTION

NDERSTANDING the connections between neural net-

works (NNs) and kernel methods has been a long-
standing goal in machine learning research [1]. Recently, there
has been a resurgence of interest in this direction, leading
to important insights and powerful algorithms [2]-[8]. The
established connections require highly nontrivial assumptions:
The equivalence between a particular kernel method and a
family of NNs only exists in infinitely wide NNs and/or
in expectation of random NNs (only weakly-trained [7]).
Moreover, existing algorithms using kernels inspired by NNs
typically have prohibitively high computational complexity
(super-quadratic in sample size, to be exact [0]).

In this paper, we propose a simple method to link fully
trainable, finitely wide NNs to kernel machines (KMs), i.e.,
linear models in feature spaces (reproducing kernel Hilbert
spaces (RKHSs)) (Fig. [T). Specifically, as opposed to the
existing literature, where the nonlinearity is considered the last
component of an NN layer or module (composition of layers),
we consider it to be the first component of the next layer.
Then layers in deep NN can be identified as linear models
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in feature spaces connected by potentially nonlinear feature
maps. These linear models can be proven to be KMs with
kernels induced by the connecting feature maps. The benefits
of our construction are three-fold: First, the connections are
established for fully trainable and finitely wide NNs, and are
exact in the sense that the trainable parameters of the NN
layers are exactly those of the corresponding KMs. Second,
our method works with any NN layer, fully-connected or
convolutional, with minimal adjustments. Last but not least,
these NN-equivalent KMs run in linear time, contrasting the
super-quadratic runtime of existing algorithms.

We then turn to another important yet understudied problem:
How can we modularize deep learning (DL)? In engineering
and software engineering in particular, modularization is the
core of any scalable workflow. Dividing the design into
modules, optimizing them individually, and then wiring them
together simplifies implementation via enabling unit tests, and
enhances maintainability and reusability. There is currently no
reliable way to completely modularize a deep NN, however,
since there is no modular learning approach that provably
matches the performance of end-to-end training. As a result,
one is forced to design and optimize the entire model as
a whole, configuring hundreds of hyperparameters simulta-
neously. When performance is unsatisfying, it is practically
impossible to trace the source of the problem to a particular
design choice. Even if one succeeded in training a good model,
reusing that model for a new task is highly nontrivial: Which
part of the model is more reusable for what task?

To enable fully modularized DL, we develop a provably
optimal modular training framework for deep NNs in clas-
sification that trains each module separately, yet still finds
the overall loss function minimizer as an end-to-end approach
would. Focusing on the two-module case, we prove that the
training of input and output modules can be decoupled by
leveraging pairwise kernel evaluations on training examples
from distinct classes, where the kernel is defined by the output
module’s nonlinearity. It suffices to have the input module
optimize a proxy objective function that does not involve the
trainable parameters of the output one, removing the need
for error backpropagation between modules. On MNIST and
CIFAR-10, our modular approach compares favorably against
end-to-end training in terms of accuracy.

Our modular learning utilizes labels in a way that is
very different from the existing end-to-end training paradigm.
Specifically, training of the input module involves only pairs
of examples from distinct classes with no need for knowing
the actual classes. This is a weaker form of supervision than
knowing exactly which class each example belongs to as re-
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quired by backpropagation. And we empirically show that the
output module, which requires full supervision in training, is
highly label-efficient, achieving 94.88% accuracy on CIFAR-
10 with 10 randomly selected labeled examples (one from
each class) using a ResNet-18 [9] backbone (94.93% when
using all 50000 labels). Overall, our modular training requires
a different, weaker form of supervision than the existing
end-to-end backpropagation and can potentially enable less
costly procedures for acquiring labeled data and more powerful
un/semi-supervised learning algorithms.

To showcase one of the main benefits of modularization
— module reuse with confidence — we demonstrate that
one can easily and reliably quantify the reusability of a pre-
trained module on a new target task with our proxy objective
function, providing a fast yet effective solution to an important
practical issue in transfer learning. Moreover, this method can
be extended to measure task transferability, a central problem
in transfer learning, continual/lifelong learning, and multi-task
learning [[10]. Unlike many existing methods, our approach
requires no training, is task agnostic, flexible, and completely
data-driven. Nevertheless, it accurately described the task
space structure on 15 binary classification tasks derived from
CIFAR-10 using only a small amount of labeled data.

To summarize, our main contributions are as follows.

« We present a simple method that establishes connections
between fully trainable, finitely wide NNs and KMs,
contrasting earlier efforts that always assume random
networks or require infinite widths. (Sec.

o« We present a modular training framework, opening up
new possibilities for modularized DL. Focusing on the
two-module case, we provide an optimality proof for
our learning approach, guaranteeing that it finds the loss
function minimizer without between-module backpropa-
gation. As empirical validation, we demonstrate its strong
performance on MNIST and CIFAR-10. (Sec.

e Our modular learning approach sheds new light on the
label requirement of DL: It relies almost only on weakly-
labeled example pairs, achieving state-of-the-art accuracy
on CIFAR-10 with a single randomly chosen fully-labeled
example per class. (Sec. [VII-D)

« We propose a simple but effective method to quantify
module reusability and task transferability using compo-
nents from our modular training framework, demonstrat-
ing that modularized DL enables solutions to important
issues in transfer learning, lifelong learning, etc. (Sec. [V)

II. NOTATIONS AND BACKGROUND
A. Notations

Throughout, we use bold capital letters for matrices and
tensors, bold lower-case letters for vectors, and unbold letters
for scalars. (v); denotes the i component of vector v. And
W) denotes the j" column of matrix W. For a 3D tensor
X, X[:,:,¢] denotes the ¢ matrix indexing along the third
dimension from the left (or the ¢ channel). We use (-, )
to denote the inner product in an inner product space H.
And the subscript shall be omitted if doing so causes no
confusion. For functions, we use capital letters to denote

Conventional View: G; (ith layer or module),

<w4]+1' . )I |,/):+|( )

Our View: F; (i*M 1ayer or module), FionFiypn

F,,, is a kernel machine layer w/ kernel defined by ¢

Fig. 1: Viewing the models from a new perspective, we
identify the kernel machines “hidden” in neural networks.
Specifically, by absorbing the trailing nonlinearity of a layer
or a module (composition of layers) into the next layer, layers
become linear models in feature spaces. These linear models
can be shown to be kernel machines. Best viewed in color.

vector/matrix/tensor-valued functions, and lower-case letters
are reserved specifically for scalar-valued ones. In a network,
we call a composition of an arbitrary number of layers as a
module for convenience.

Since we shall propose an alternative view on NNs that
redefine the network layers and also modules, it is helpful to
introduce notations to distinguish our view and the conven-
tional one. We use letter GG; (or g;, depending on if this layer
or module is a scalar-valued function) with a numeric subscript
i € N\ {0} to refer to the i network layer or module under
the conventional view and letter F; (or f;) the it layer or
module (of the same model) under our view. Example usages
can be found in Fig. [T] and Sec.

B. Kernels and Kernel Machines

Kernel machines can be considered as linear models in
feature spaces, the mappings into which are potentially non-
linear [11]. Consider a feature map @ : R? — H, where H is
a (real) Hilbert space, i.e., an inner product space over the real
numbers that is complete in the metric induced by the inner
product, a kernel machine is a linear model in this feature
space H:

f(x) = (w,®(x))g +b,w e H,beR, (1)

where w,b are its trainable weights and bias, respectively.
For certain feature spaces H (called RKHSs), one can define
a bivariate “kernel” function k that is symmetric and positive
semidefinite via

k(u,v) = (P(u), D(v)) . )

This definition is often used as an identity and is referred to
as the “kernel trick” in some more modern texts [II]F_]

IThe correspondence between k and @ holds true in both directions and
is sometimes stated the other way around. Namely, per Moore-Aronszajn
Theorem, for every symmetric, continuous, positive semidefinite bivariate
function k that maps into R, one can find an RKHS H such that k(u,v) =
(®(u), ®(v)) i, where the feature map @ is defined through k as ®(u) :=
k(u,-) [12).
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An RKHS, different from a general Hilbert space, possesses
a “canonical coordinate system” induced by the kernel
(in addition to the regular coordinate system induced by its
basis) that enables one to concisely express distance between
feature vectors using kernel values, thanks to the reproducing
property [14]. Concretely, we have

[®(n) — &(V)||%4 = k(u,u) + k(v,v) —k(u,v). (3)

One can use the “kernel trick” to implement highly non-
trivial feature maps (thus highly complicated functions in the
input space). For feature maps that are not implementable, e.g.,
when ®(x) is an infinite series, one can approximate the KM
with a set of “centers” xq,...,X, as follows:

f(x) = (w,®(x))g+b,w € span{®(x1),...,P(x,)},b € R,
“)
Assuming a k satisfying Eq. ] can be found and using the
“kernel trick”, the right hand side is equal to
Z a;k(xi,x) +b,0,b € R. )

Now, the learnable parameters become the «;’s anb b.

This approximation changes the computational complexity
of evaluating the kernel machine on a single example from
O(h), where h is the dimension of the feature space H and
can be infinite for certain kernels, to O(nd), where d is the
dimension of the input space. In practice, the runtime for a
sample is quadratic in sample size since n is typically on
the same order as the sample size. There exists acceleration
methods that reduce the complexity via further approximation
in this case (e.g., [15])), yet the compromise in performance can
be nonnegligible in practice especially when the input space
dimension is large.

III. REVEALING THE HIDDEN KERNEL MACHINES IN
NEURAL NETWORKS

In this section, we present a method revealing the hidden
KMs in NNs. The idea is simple: Instead of considering the
nonlinearity to be the last component of a layer or a module
(call it the it layer or module here for convenience), we
consider it to be the first component of the next layer, i.e., layer
i+ 1. After potentially repeating this process for layer ¢ +1 to
get rid of its trailing nonlinearity, we turned layer i 4 1 into a
layer of linear models in feature spaces. These linear models
can be shown to be KMs (Fig. [T). We first present the method
for fully-connected networks and then extend to CNNs [16].
Contrasting existing works (e.g., [7]), the extension requires
minimal adjustments only.

A. The Methodology

1) Fully-Connected Neural Networks: We use a one-
hidden-layer NN as an illustrative example. The idea scales
easily to deeper models. Note that we assume the output
layer has a single neuron. When the output layer has multiple
neurons, one can apply the same analysis to each of these
output neurons. Finally, we assume the output layer to be
linear without loss of generality since if there is a trailing

Fig. 2: A convolutional layer (illustrated is a single-filter
instantiation) is multiple kernel learning: It can be equated to
concatenated KMs using distinct kernels but sharing weights.
Each color corresponds to a KM. Elements in black are shared
across KMs. Best viewed in color.

nonlinearity at the output, it can be viewed as a part of the
loss function instead of a part of the network.

Considering an input vector x € R%_ the model f = ¢gy0G,
is given as

G1(x) = (W, x) € R%; (6)
f(x) = g2(G1(x)) = w3 G1(x), (7

where @ is an elementwise nonlinearity such as ReLU
with ®(v) := (¢ ((V)1),...,¢((v)a,))" for any v € R%
and some ¢ : R — R, G the input layer, g» the output layer,
f(x) the final model output, and W7 and wy the learnable
weights of the NN model.

There are different ways of dividing this particular model
into “layers”. Indeed, without changing the input-output map-
ping, we can redefine the layers as follows.

F(x) = (o, ®(W{ x))ga; = (wa, ®(F3(x)))par = fQ(Fl((;)))y

where Fj(x) = ((ng), X)Rdos -« - (ngl), x)RdO)T
{-,")gw is the canonical inner product of R* for k = dy, d,
i.e., the dot product. In other words, we treat F; as the new
input layer and absorb the nonlinearity @ into the old output
layer, forming the new output layer fo such that each layer is
now one or multiple parallel linear models, i.e., models linear
in their weights (not necessarily in their inputs) (Fig. [T).

Then one-hidden layer NN can be interpreted as a compo-
sition of KMs with finite-dimensional RKHSs. Using Eq. |Z[,
the linear models on the input layer are simply KMs with
feature maps being the identity map on R%, inducing the
identity kernel, i.e., k7 (u,v) := (u, V)g4,. On the other hand,
the linear model on the output layer, i.e., f2, can be easily
identified as a KM with feature map being ¢, (and together
with the input layer) inducing kernel k (Fi(u), Fi(v)) =
(® (Fi (1), ® (Fy(v)))gn

2) Convolutional Neural Networks: The above method for
fully-connected networks can be extended to CNNs as follows.
We discuss here simple 2D convolutional networks and the
same idea generalizes to more complicated models easily.

and
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Similar to the fully-connected case, we first absorb the
trailing elementwise nonlinearity & of each layer or module
of interest into the next layer. Suppose the activation tensor
of a given layer or module is X € R x R x R, then
each channel of the next layer is a matrix of KMs sharing
the same weights with the ij" KM having feature map:
CI)ZJ(X) = T‘Z‘jo(b<X), where Tij - RH xRW xR¢ — RHEXW .
Z — 25:1 si;(Z[:,:,k]) and s;; denotes the operator that
returns a vectorized receptive field centered at a specific
location (depending on %j) upon receiving a matrix. This is
illustrated in Fig. 2]

There are two main differences compared to the fully-
connected case. First, in the convolutional case, the KMs
on each channel in a given layer share the same weights
whereas in the fully-connected case, there is no such restric-
tion. Second, these KMs have distinct kernel functions, unlike
in the fully-connected case where they share kernels. These
observations allow for a new perspective in interpreting CNNSs.
Indeed, the fact that each convolutional layer is essentially
KMs using distinct kernels but sharing weights suggests that
it can be viewed as an instantiation of the multiple kernel
learning framework that has been studied in the kernel method
literature for decades [18]]. However here the composition is
different because it is an embedding of functions.

B. Implementable Feature Maps and Linear Runtime

Note that, for common NNs, the kernels involved in the
above methods have implementable feature maps with feature
space dimensions being equal to the widths of the correspond-
ing NN layers (so they are always finite). Therefore, one
no longer needs to rely on the kernel trick and approximate
the kernel machines through pairwise evaluations on a set
of centers — one can simply use the explicit linear model
representation f(x) = (w, ®(x)) + b! The major advantage is
that the computational complexity of running the model on a
single data example becomes O(p), where p is the size of the
corresponding NN layer (or equivalently, the size of ®(x)).
This reduces the runtime over a set of data from the usual
super-quadratic to linear in sample size, making the model
much more practical.

IV. PROVABLY OPTIMAL MODULAR LEARNING

Constructing a unified model class that encompasses both
NNs and KMs yields immediately practical implications.
Namely, existing algorithms and results for KMs can now
be directly applied to NNs and vice versa. Specifically, one
may expect the theory behind KMs (see, e.g., [14], [19], [20])
to significantly enrich our understanding of NNs and enable
novel algorithms.

In this section, we propose a provably optimal modular
training framework for NNs in classification, which enables
fully modularized DL workflows. We focus on the two-module
case. The idea can be easily generalized to enable modular
training with more than two modules by analyzing one pair
of modules at a time. We leave the corresponding optimality
proofs as a future work. Applying this framework to NNs
essentially relies on viewing the output module as a KM and

utilizing its linearity in an RKHS and properties of the RKHS,
illustrating how the interplay of NN and KM theories can
produce useful results.

A. Set-Up, Goal, and an Idea

Suppose we have a deep model consisting of two modules
F = F, 0 F and an objective function L(F,S), where S
is a training set S = {(xi,y;)}7~;. A simple example of
such a model would be the one-hidden-layer NN defined in
the previous section. Note that in that example, we wrote the
output layer in lower case as fy to emphasize that it was a
scalar-valued function. Here, we relax that constraint and write
upper-case F5 instead to imply that the second layer can be
vector-valued as well. Also note that now we no longer assume
F5 or F) to be a single layer — they can be compositions of
arbitrary layers.

A modular learning algorithm trains F}, freezes it after-
wards, then trains F5. And the goal is that after wiring together
the two trained modules, the overall model minimizes L.

For a given S, define

Fi:={F1:3F st. Fho Fy € argmin L(F,S)}.  (9)
F

Clearly, to obtain an F' that minimizes L, the goal when
training F) can be to find an F] that is in F;. Then one can
simply train F5 to minimize L(F5 o Fy,S) and the resulting
minimizer F will satisfy F o F| € argming L(F,S). And
if we can characterize F;} independently of the trainable
parameters of Fb, the training of F; can be decoupled from
that of F5.

B. Main Result

Earlier we have shown how to redefine NN layers such
that they become KMs, but we have not yet demonstrated any
practical advantage of such a representation. In this section,
we show that under this KM view on the output module,
the optimal input module can be described independently of
the output module, which, as stated above, is the core idea
motivating our modular learning algorithm. For simplicity, we
discuss only binary classification. The result easily extend to
classification with more classes.

Concretely, we present a result stating that if I is a single
KM with kernel k, F; can be characterized independently of
the trainable parameters of F, via pairwise evaluations of the
kernel k£ on training data from distinct classes.

Interpreting a two-module classifier F» o Fy as F learning
a new representation of the given data on which Fb will
carry out the classification, the intuition behind our result
can be explained as follows. Given some data, its “optimal”
representation for a linear model to classify should be the one
where examples from distinct classes are located as distant
from each other as possible. Thus, the optimal F} should be
the one that produces this optimal representation. And since
our F5 is a linear model in an RKHS feature space and because
distance in an RKHS can be expressed via evaluations of its
reproducing kernel, the optimal F; can then be fully described
with only pairwise kernel evaluations over the training data,
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e, k(Fi(x;), Fi(x;)) for x;,x; being training examples
from different classes. In other words, an RKHS provides
a useful “canonical coordinate system” [13] that enables a
concise definition of the optimal input module for any linear
classifier in that RKHS using only kernel evaluations. The
proof of the following theorem is given in the Appendix.

Theorem IV.l. Let S = {(x;,y:)},,x; € R¥ y, €
{+,=1),Vi, be given and consider Fy : R% — R f, :
R4 — Rz (w,d(z))+b, where w, b are free parameters
and ¢ is a given mapping into a real inner product space with
lp(u)|| = « for all u € R4 and some fixed o > O. Let I,
be the set of i’s in {1,...,n} such that y; = +. And let I_
be the set of j’s in {1,...,n} such that y; = —. Suppose the
objective function L admits the following form:

L(fZ © Fla S)
- Z K_;,_ f2 e} F1 Xz
l€I+
+ Ag(lwll),
where A > 0, g, 0y, 0_ are all real-valued with
g, {_nondecreasing and ¢ nonincreasing.
For an FY, let f3 be in argming, L(fs o FY,S). If Vi €
1,7 €I, F} satisfies

Z (- (f20 Fi(x;))

JEI,
(10)

lP(FY (x:)) = d(FT (35))[| = [l¢(s) — ¢(t)[], Vs, ¢ € Rd(lfl)
then
fioFr e aﬁcfgjn L(fao 1, S). (12)
Remark: Defining kernel
k(Fi(w), Fi(v)) = (¢ (F1(w)) ¢ (F1(v))),  (13)

Eq. [T1] is equivalent to

k (Fy(x:), Fy(x;) < k(s,t),Vs,t cR" Vie I ,jel .

(14)

Further, if the infimum of k(u, v) is attained in R% x R%
and equals [, then Eq. [11]is equivalent to

k(FY (%), FY (%)) =B, Vi€ I, jel . (15)

C. Applicability of the Main Result

1) A Two-Module View on Neural Networks: Most popular
networks, including the ResNet family [9], has the following
representation:

F=Gy0Gy, (16)

where G is a output linear layer: (G2(x)), = (w;,x)+b; and
(G1 is a composition of arbitrary previous layers ending with
a nonlinearity ®. When the model also uses a nonlinearity on
top of the output linear layer, one may absorb the nonlinearity
into the loss function such that the model would still assume
the aforementioned representation.

2Throughout, we consider the natural norm induced by the inner product,
ie., ||t]? = (t,t), Vt.

Considering the ending nonlinearity of GGy as the beginning
component of the output layer, we can view the output layer
as the KM output module and apply Theorem To be
specific, write G; = ® o F; for some Fj, we can rewrite the
model such that it satisfies the condition of Theorem [V.1}

(F(x)); = (Wi, G1(x)) + bi = (wi, ® (F1(x))) + bi,
k(Fi(u), F1(v)) := (2(F1(w)), ®(F1(v)))-

Note that the assumption that ||®(u)]| is fixed for all u may
require that one normalizes the activation vector/matrix/tensor
in practice, which is the only modification one has to make
for a standard NN to satisfy the conditions of the theorem.

2) Loss Functions: In terms of loss functions, many com-
mon ones including softmax + cross-entropy (two-class ver-
sion), any monotonic nonlinearity + mean squared error, and
hinge loss, admit the required representation. We provide
details in the Appendix.

a7)
(18)

D. From Theory to Algorithm

To convert the theoretical result into an implementable
learning algorithm for classification (with potentially more
than two classes), one may proceed as follows. Let an NN
G2 o (G; be given, where G5 is a linear layer (absorb the
trailing nonlinearity into the loss function if necessary) and
G1 = ® o Fy is a composition of arbitrary layers followed
by nonlinearity ®. Suppose the activation vector of Gy is
normalized such that it is a unit vector by (elementwise)
dividing the activation vector by its norm. Also let a loss
function L be given and suppose it (or its two-class analog)
satisfies the requirements of Theorem Define kernel
kE(Fi(u), Fi(v)) = (®(Fi(u)),®(Fi(v))). Determine 5 :=
min k based on ®. Some examples include: 5 = 0 for ReLU
and sigmoid; 8 = —1 for tanh.

Given a batch of training data {(x;,y;)}; and let ' (for
negative) denote all pairs of indices ¢, j such that y; # y; and
P (for positive) denote all pairs of indices ¢ # j with y; = y;.
Train F) to maximize one of the following proxy objective
functions.

« Alignment (negative only) (AL-NEO):
B jen b (Fi(xq), Fi(x;))

Li(Fy) = =

\/BIINI\/Z@J)@/ (k (F1(x:), F1(x;)))

19)
o Contrastive (negative only) (CTS-NEO):
1
Ly(Fy) = N > exp(k(Fi(x), Fi(x)));
(i,j)eEN

(20)

o Negative Mean Squared Error (negative only) (NMSE-
NEO):
1
Li(Fh) = N > (k(Fu(m:), Fi(x;) — B)°.
(.3 eN
2D
All of the above proxy objectives can be shown to learn
an [} that satisfies the optimality condition required by
Theorem [V.1l
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Note that in cases where some of these proxies are undefined
(for example, when 8 = 0), we may train F} to maximize
the following alternative proxy objectives instead assuming
o := sup k is known, where we define k; to be « if (i,5) € P
or if i = j and f if otherwise.

o Alignment (AL): The kernel alignment [21]] between the

kernel matrix formed by k and £* on the given data.

o Upper Triangle Alignment (UTAL): Same as AL, except

only the upper triangles minus the main diagonals of the
two matrices are considered. This can be considered a
refined version of the raw alignment.

o Contrastive (CTS):

S oer exp (k (Fi(x,), Fy(x,))
2 yenup &P (k (F1(x:), Fi(x;)))
o Negative Mean Squared Error (NMSE):

Li(Fy) = —% S (K (Fu(xi), Fux))) — k). (23)
(i)

Li(F) = ; (22)

Now suppose F has been trained and frozen at F|, we
simply train G to minimize the overall loss function L(G2 o
Do FY).

V. A METHOD FOR TASK TRANSFERABILITY ESTIMATION

In this section, we demonstrate the improved module
reusability of modularized DL. Specifically, we consider the
following practical issue in transfer learning: Assume one
is given a set of input modules pre-trained on some source
tasks and a set of target tasks to be solved by training a
output module on top of a frozen input module. How can one
determine the reusability of these pre-trained modules for the
target tasks? Underlying this practical problem is a theoretical
issue that is central to many important research domains
including transfer learning, continual/lifelong learning, meta
learning, and multi-task learning: Given a set of tasks, how
to effectively model the task space structure in terms of how
helpful the features useful for one task is to another [10],
[22]]-[24].

Let a target task be characterized by the loss function
L(F5 0 F1,S), where L is a loss function assuming the rep-
resentation in Theorem [[V.1|and S is some training data [[10].
Our modular learning framework suggests that we can measure
the goodness of these pre-trained F)’s for this target task
by measuring Lq(F}y,S), where L; is a proxy objective.
This is based on the fact that the F) that maximizes the
proxy objective L;(F3,S) constitutes the input module of
a minimizer for L(F; o Fy,S). Therefore, one can simply
rank the pre-trained F}’s in terms of how well they maximize
L(Fy, S) and select the maximizer. Since a well-trained input
module must encode useful information for the source task,
this procedure can also fully describe the task space structure
of the given tasks. The benefit is that this procedure requires
no training. Indeed, one only needs to run the given modules
on potentially a subset of S. Moreover, this method is task
agnostic, flexible, and completely data-dependent.

In terms of the optimality of our transferability measure,
if we define the true transferability of a particular F; to be

ming, B ) L(Fa0 Fi, (x,y)) [10], then ming, L(Fyo F, S)
is a bound on the true transferability minus a complexity
measure on the model class from which we choose our
model [25]]. We leave a more refined study as future work.

Comparisons of our method against some notable related
work are provided in Sec. and summarized in Table
from which it is clear that our method is among the fastest
and most flexible.

VI. RELATED WORK
A. Connecting Neural Networks With Kernel Methods

While some works establish connections via exactly match-
ing one architecture to the other, others do so from a proba-
bilistic perspective by studying large-sample behavior in the
infinite layer widths limit and/or taking the expectation over
the network parameters. The former line of research, to which
this work belongs, often yields more direct and practical results
since the theories operate under much milder assumptions.

1) Exact Equivalences: In [[19], a family of kernels were
defined to mimic single-hidden-layer MLPs. The resulting
KMs bear the same mathematical formulations as the corre-
sponding NNs with the constraint that the input layer weights
of the NNs are fixed. The authors of [26] modified these
kernels to allow the KMs to correspond to fully-trainable
single-hidden-layer MLPs. Their construction can be viewed
as a special case of ours. Nevertheless, they presented their
work as another way to train MLPs without pointing out the
connections with KMs, i.e., their MLPs are in fact also KMs.
The input and output layers are trained alternately, with the
former learning to minimize the VC dimension [27] of the
latter while the latter learning to classify. An optimality guar-
antee of the training was hinted. In contrast, we extended their
theoretical framework, explicitly established the connections
between NNs and KMs, and proposed a fully modular training
approach with proved strong optimality guarantee.

2) Equivalences in Infinite Widths and/or in Expectation:
That single-hidden-layer MLPs are Gaussian processes in the
infinite width limit and in expectation of random input layer
has been known at least since [[1]]. [2] generalized the classic
result to deeper MLPs. [5]] defined a family of “arc-cosine”
kernels to imitate the computations performed by infinitely
wide networks in expectation. [4] proposed kernels that are
equivalent to expectations of finite-widths random networks.
[7] presented exact computations of some kernels, using which
the kernel regression models can be shown to be the limit (in
widths and training time) of fully-trainable, infinitely wide
fully-connected networks trained with gradient descent. In
comparison, our work established that NNs can be directly
viewed as KMs, requiring neither infinite widths nor taking
expectation over random parameters.

B. Modularized Deep Learning

NNs were developed with inspiration from human brain
structures and functions [28|]. The human brain itself is mod-
ular in a hierarchical manner, as the learning process always
occurs in a very localized subset of highly inter-connected
nodes which are relatively sparsely connected to nodes in other
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modules [29]], [30]. That is to say that the human brain is
organized as functional, sparsely connected subunits [31].

Many existing works in machine learning can be analyzed
from the perspective of modularization. An old example is
the mixture of experts [32], [33]] which uses a gating function
to enforce each expert in a committee of networks to solve
a distinct group of training cases. Another recent example
is the generative adversarial networks (GANSs) [34]. Typical
GANSs have two competing neural networks that are essentially
decoupled in functionality and can be viewed as two modules.
In [35], the authors proposed an a posteriori method that
analyzes a trained network as modules in order to extract
useful information. Most works in this direction, however,
achieved only partial modularization due to their dependence
of end-to-end optimization.

The authors of [36] pioneered the idea of greedily learn the
architecture of an NN, achieving full modularization. In their
work, each new node is added to maximize the correlation
between its output and the residual error. Several works
attempted to remove the need for end-to-end backpropagation
via approximating gradient signals locally at each layer or
each node [37]-[41]. In [42], a backpropagation-free deep
architecture based on decision trees was proposed. In [43]], the
authors proposed to learn the hidden layers with unsupervised
contrastive learning, decoupling their training from that of
the output layer. Compared to these existing methods that
enable full modularization, our method is simple to implement
and provide strong optimality guarantee. A similar provably
optimal modular training framework was proposed in [44].
However, their optimality result was less general than ours
and their framework required that the NN be modified by
substituting certain neurons with KMs using classical kernels
that have quadratic runtime.

C. Task Transferability

Describing the task space structure via measuring the trans-
ferability between tasks, i.e., estimating to what extent rep-
resentations learned from one task can help learning another,
is a central problem in transfer learning, multi-task learning,
meta learning, continual/lifelong learning, etc [[10], [22]-[24].

Information-theoretic measures have been proven useful in
quantifying task transferability. Early task-relatedness mea-
sures include the F-relatedness [45] and the A-distance [46].
H-divergence [47] and Wasserstein distance [48|] have re-
ceived increasing attention in recent years. Specifically, [49]
applied H-divergence in natural language processing for text
classification, whereas [[50] used Wasserstein distance to esti-
mate the similarity of linear parameters instead of the data
generation distributions. Along this line of research, some
more recent methods include H-score [51] and the Bregman-
correntropy conditional divergence [52], the latter of which
used the correntropy functional [53]] and the Bregman matrix
divergence [54] to quantify divergence between mappings.

Model-based methods, i.e., methods that leverage trained
models to extract knowledge about tasks, are more closely
related to our proposed method. [10] estimated task trans-
ferability via the negative conditional entropy between their

Method Training  Test Runtime  Main Assumption
TASK2VEC [23] Vv a reference model
Taskonomy [22] v a third reference task
NCE [10] X O(n?3) tasks share input
LEEP [24] X O(n?) cross-entropy loss
Ours X O(n?) form of classifier

TABLE I: Comparisons with similar methods for task trans-
ferability estimation. For the training-free methods, we also
provide the test runtime in terms of n, the size of the target
task dataset that is being used for the estimation. Note that
the extra trainings constitute the main overhead of the methods
that require training, making comparisons on their test runtime
against the training-free methods meaningless. Details are

provided in Sec.

training label sequences, assuming the two tasks share the
same input data examples. The proposed method assumed
the existence of an optimal trained source model but did not
actually use a trained model in the estimation. [24] removed
the input-sharing assumption. Both works assumed that the
source and the target tasks use the cross-entropy loss. Our
method works, on the other hand, asserts mild assumptions on
the choice of loss function only. Taskonomy [22] estimated the
transferability of a pair of tasks via the transfer performance
from the tasks to a third reference task. Task2Vec [23]] tuned a
single “probe” network on all target tasks and extracted task-
characterizing information via the parameters of this network.
Both Taskonomy and Task2Vec required training models on
target tasks to be able to extract task information. In contrast,
our method does not require any training on target tasks.

All of the mentioned model-based methods have their
limiting assumptions. The main assumption of our method,
required by our optimality guarantee, is that the output module
(classifier) that will be tuned on top of the transferred compo-
nent admits a particular form as described in Theorem [IV.
Essentially, it is required to be a single-layer NN. It is worth
noting that this set-up is common in practice. We summarize
the properties of these related methods in Table [T

VII. EXPERIMENTS

A. Sanity Check: Modular Training Results in Identical Learn-
ing Dynamics As End-to-End

In this section, we attempt to answer the important question:
Do end-to-end and the proposed modular training, when
restricted to the architecturally corresponding hidden modules,
drive the underlying modules to functions that are identical
in terms of minimizing the overall loss function? Clearly, a
positive answer would verify empirically the optimality of the
modular approach.

We now test this hypothesis with toy data. The set up is
as follows. We generate 1000 32-dimensional random input
and assign them random labels from 10 classes. The under-
lying network consists two modules. The input module is a
(32 — 512) fully-connected (fc) layer followed by ReLU
nonlinearity and another (512 — 2) fc layer. The output
module is a (2 — 10) fc layer. The two modules are linked
by a tanh nonlinearity (output normalized to unit vector). The
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Fig. 3: Using toy data, we visualize the learning dynamics of
our modular training approach and that of backpropagation by
visualizing the output representations from the input module.
We observe that the two methods result in input modules that
are identical functions when restricted to the random training
data, confirming that one may greedily optimize the input
module using a proxy objective and obtain the same outcome
as an end-to-end approach. e2e for end-to-end training. mdlIr
for modular training. Classes are color-coded.

overall loss is the cross-entropy loss. And for modular training,
the proxy objective is CTS-NEO. We visualize the activations
from the tanh nonlinearity as an indicator of the behavior of
the hidden layers under training.

From Fig. 3] we see that the underlying input modules
are indeed driven to the same functions (when restricted to
the training data and in terms of minimizing the overall
loss) by both modular and end-to-end in the limit of training
time going to infinity. This confirms the optimality of our
proposed method (albeit in a simplified set-up) and allows
us to modularize learning with confidence.

B. Sanity Check: Proxy Objectives Align Well With Accuracy

We now extend the verification of optimality from the
simplified set-up in the previous section to a more practical
setting. Recall that we have characterized our proxy objective
as function of the input module whose maximizers constitute
parts of the overall loss minimizers and we have proposed to
train the input module to maximize the proxy objective.

Ideally, however, a proxy objective for input module should
satisfy: The overall accuracy is a function of solely the proxy
value and the output module and as a function of the proxy
value, the overall accuracy is strictly increasing Despite that
this characterization is not what we had with our theoretical
results, we now demonstrate empirically that the proxies we
proposed enjoy this property.

The set-up is as follows. We train a LeNet-5 as two modules
on MNIST with (convl — tanh — max pool — conv2 —
tanh — max pool — fcl — tanh — fc2) as the input module,

3This type of results is reminiscent of the “ideal bounds” for representation
learning sought for in, e.g., [55]].

MNIST Accuracy vs. Proxy Objective
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Fig. 4: The overall accuracy, as a function of the proxy
objective, is increasing. The positive correlation becomes near
perfect in high-performance regime, validating our theoretical
results. Overall, this justifies the optimality of training the
input module to maximize the proxy objective. Note that the
values of the illustrated proxies were normalized to [0,1] in
order for them to be properly visualized in the same plot.

and (tanh — fc3) as the output one. The input module is
trained with a number of different epochs so as to achieve
different proxy values. And for each epoch, we freeze the
input module and train output module to minimize the overall
cross-entropy until it converges. Mathematically, suppose we
froze input module at F| and we denote the proxy as L; and
overall accuracy as A, we are visualizing maxp, A(F» o FY)
vs. L1(FY), where F5 is the output module.

Fig. [4| shows that the overall accuracy, as a function of
the proxy value, is indeed approximately increasing. Fur-
ther, this positive correlation becomes near perfect in high-
accuracy regime, which agrees with our theoretical results.
To summarize, we have extended our theoretical guarantees
and empirically verified that maximizing the proposed proxy
objectives effectively learns input modules that are optimal in
terms of maximizing the overall accuracy, rendering end-to-
end training unnecessary.

C. Accuracy on MNIST and CIFAR-10

We now present the main results on MNIST and CIFAR-
10 demonstrating the effectiveness of our modular learning
method. To facilitate fair comparisons, end-to-end and modular
training operate on the same backbone network. For all results,
we used stochastic gradient descent as the optimizer with batch
size 128. For each module in the modular method as well as
the end-to-end baseline, we trained with annealing learning
rates (0.1,0.01,0.001, each for 200 epochs). The momentum
was set to 0.9 throughout. For data preprocessing, we used
simple mean subtraction followed by division by standard
deviation. On CIFAR-10, we used the standard data augmenta-
tion pipeline from [9], i.e., random flipping and clipping with
the exact parameters specified therein. In modular training,
the models were trained as two modules, with the output
layer alone as the output module and everything else as the
input module as specified in Sec. We normalized the
activation vector right before the output layer of each model
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Model Training  Obj. Fn. Acc. (%)
LeNet-5 (ReLU) e2e XE 99.33
LeNet-5 (tanh) e2e XE 99.32
LeNet-5 (ReLU)  mdlr AL/XE 99.35
LeNet-5 (ReLU)  mdlr UTAL/XE 99.42
LeNet-5 (ReLU)  mdlr MSE/XE 99.36
LeNet-5 (tanh) mdlIr AL-NEO/XE 99.11 (99.19)
LeNet-5 (tanh) mdlr UTAL-NEO/XE  99.21 (99.11)
LeNet-5 (tanh) mdlr MSE-NEO/XE 99.27 (99.23)
LeNet-5 (tanh) mdlr CTS-NEO/XE 99.16 (99.16)

TABLE II: Accuracy on MNIST. e2e for end-to-end. mdlr for
modular as two modules. Obj. Fn. specifies the loss function
(and the proxy objective for the input module, if applicable)
used. XE stands for cross-entropy. Definitions of the proxy
objectives can be found in Sec. Using LeNet-5 as the
network backbone on MNIST, our modular approach compares
favorably against end-to-end training.

Model Data Aug.  Training Obj. Fn.  Acc. (%)
ResNet-18 flip & clip e2e XE 94.91
ResNet-152 flip & clip e2e XE 95.87
ResNet-18 flip & clip mdlr AL/XE 94.93
ResNet-152 flip & clip  mdlr AL/XE 95.71
CKN [56] none 82.18
CNTK [8] flip 81.40
CNTK* [8]] flip 88.36
CNN-GP [8] flip 82.20
CNN-GP* [8] flip 88.92
NKWT* [4] flip 89.80

TABLE III: Accuracy on CIFAR-10. Modular training yielded
favorable results compared to end-to-end. To the best of our
knowledge, there is no other purely modular training method
that matches backpropagation with a competitive network
backbone on CIFAR-10 [38|], [39], [41], [43], [44]]. The
ResNets trained with our modular approach can be viewed as
kernel machines and outperformed other existing NN-inspired
kernel methods. * means the method used more sophisticated
data preprocessing than the ResNets. Note that all of the
baseline kernel methods have quadratic runtime and it is
nontrivial to incorporate data augmentation into their pipelines.

to a unit vector such that the equal-norm condition required
by Theorem [[V.1|is satisfied. We did not observe a significant
performance difference after this normalization.

From Table [[I] and [II, we see that on three different back-
bone networks and both MNIST and CIFAR-10, our modular
learning compares favorably against end-to-end. Since under
two-module modular training, the ResNets can be viewed as
KMs with adaptive kernels, we also compared performance
with other NN-inspired kernel methods in the literature. In
Table the ResNet KMs clearly outperformed other kernel
methods by a considerable margin.

D. Label Efficiency of Modular Deep Learning

Intuitively, the input module in a deep architecture can
be understood as learning a new representation of the given
data with which the output module’s classification task is
simplified. A simple way to quantify the difficulty of a learning
task is through its sample complexity, which, when put in
simple terms, refers to the number of labeled examples needed

CIFAR-10 Label Efficiency:

CIFAR-10 Label Efficiency: Modular vs. End-to-End
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Fig. 5: With the output module trained with only 30 ran-
domly chosen fully-labeled examples, the modular model still
achieved 94.88% accuracy on CIFAR-10 (the same model
achieved 94.93% when using all 50000 labeled examples).
When the training data has balanced classes (mdlr (balanced)),
modular training only required 10 randomly chosen examples
to achieve 94.88% accuracy — a single example per class.

for a given model and a training algorithm to achieve a certain
level of test accuracy [11]].

In a modular training setting, one can decouple the training
of input and output modules and then it would make sense
to discuss the sample complexity of the two modules individ-
ually. The output modules should require fewer labeled data
examples to train since its task has been simplified when the
input one has been well-trained. We now observe that this is
indeed the case.

We trained ResNet-18 on CIFAR-10 with end-to-end and
our modular approach. The input module was trained with the
full training set in the modular method, but again, this only
requires weak pairwise labels. We now compare the need for
fully-labeled data between the two training methods.

With the full training set of 50000 labeled examples, the
modular and end-to-end model achieved 94.93% and 94.91%
test accuracy, respectively. From Fig. 5] we see that while
the end-to-end model struggled in the label-scarce regime,
achieving barely over 20% accuracy with 50 fully-labeled
examples, the modular model consistently achieved strong
performance, achieving 94.88% accuracy with 30 randomly
chosen fully-labeled examples for training. In fact, if we ensure
that there is at least one example from each class in the training
data, the modular approach needed as few as 10 randomly
chosen examples to achieve 94.88% accuracy, that is, a single
randomly chosen example per classE] These observations sug-
gest that our modular training method can almost completely
rely on weak pairwise labels, which suggests new paradigms
for obtaining labeled data that can potentially be less costly
than the existing ones.

E. Connections With Un/Semi-Supervised Learning

The observation from the previous section that our modular
method learns powerful classifiers using almost purely weak

“The fact that the modular model underperformed at 10 and 20 labels is
likely caused by that there were some classes missing in the training data that
we randomly selected. Specifically, 4 classes were missing in the 10-example
training data, and 2 in the 20-example data.
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pairwise labels, i.e., whether each pair of examples belong
to different classes, potentially have implications for un/semi-
supervised learning. Whenever the training batch size is less
than the size of the entire training set, we are using strictly
less information than backpropagationE] Thus, our approach
can be situated in between end-to-end backpropagation and
semi-supervised methods on the spectrum of learning meth-
ods ranked according to their required supervision strength.
Indeed, this paradigm of learning from pairwise relationships
is strongly reminiscent of the family of un/semi-supervised
learning methods dubbed contrastive learning [55], [57]], where
useful representations of data are learned based on pairs
of examples that are semantically (un)related, often without
supervision. As a reference point, the state-of-the-art semi-
supervised algorithm achieves 88.61% accuracy on CIFAR-
10 with 40 labels with a stronger backbone network (Wide
ResNet-28-2) and a significantly more complicated training
pipeline [58]]. While our results are not directly comparable
to theirs (our method is not purely semi-supervised after
all), we think the insights gained from our modular learning
may enable simpler yet stronger un/semi-supervised learning
algorithms and we leave this as a future work.

F. Transferability Estimation With Proxy Objective

To empirically verify the effectiveness of our transferability
estimation method, we created a set of tasks by selecting
6 classes from CIFAR-10 and grouping each pair into a
single binary classification task. The classes selected are: cat,
automobile, dog, horse, truck, deer. Each new task is named
by concatenating the first two letters from the classes involved,
e.g., cado refers to the task of classifying dogs from cats.

We trained one ResNet-18 using the proposed modular
method for each source task, using AL as the proxy objective.
For each model, the output linear layer plus the nonlinearity
preceding it is the output module, and everything else belongs
to the input module. All networks achieved on average 98.7%
test accuracy on the task they were trained orﬂ suggesting
that each frozen input module possesses information essential
to the source task. Therefore, the question of quantifying input
module reusability is essentially the same as describing the
transferability between each pair of tasks.

The true transferability between a source and a target task
in the task space can be quantified by the test performance
of the optimal output module trained for the target task on
top of a frozen input module from a source task [[10]. Our
estimation of transferability is based purely on proxy objective:
A frozen input module achieving higher proxy objective value
on a target task means that the source and target are more

5This is because if one does not cache information over batches, it is
impossible to recover the labels for the entire training set if one is only given
pairwise relationships on each batch. Another way to see that these pairwise
labels are a weaker form of supervision is to note that suppose we have two
input examples sampled from a population of c classes, full labels on their
classes, as used by end-to-end backpropagation, would provide 2 X logs, c bits
of information. On the other hand, our pairwise label on this example pair
only carries 1 bit information.

6Highc:st accuracy was 99.95%, achieved on audo. Lowest was 93.05%,
on cado.

Estimated Transferability
(Using 1000 Examples) task:
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deau
deca
dedo
deho
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hodo
hotr
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trdo

True Transferability

Source: trdo
il

Target: trdo

Fig. 6: Each task is assigned a distinct color and an angle
in polar coordinate. Transferability with respect to frdo is
illustrated using the distance from the origin, with a smaller
distance indicating a higher transferability. At practically no
computational overhead, our proposed method correctly de-
scribed the task space structure using only 10% randomly
selected training data from target task. Plots with other 14
tasks being the source and target are provided in the Appendix.

transferable. This estimation is performed using a randomly
selected subset of the target task training data.

In Fig. [6] we visualize the target space structure with trdo
being the source and the target, respectively. We see from the
figures that our method accurately described the target space
structure despite its simplicity, using only 10% of target task
training data. The discovered transferability relationships also
align well with common sense. For example, frdo is more
transferable to, e.g., detr, since they both contain the truck
class. trdo also transfers well with auca because features useful
for distinguishing trucks from dogs are likely also helpful for
classifying automobiles from cats.

VIII. CONCLUSIONS

In this paper, we proposed a simple, alternative view on
NNs that turns layers into linear models in feature spaces
and showed that they are KMs. Based on this construction,
we presented a modular learning framework for classification
that does not require between-module propagation. Focusing
on the two-module instantiation, we proved its optimality,
demonstrated that it matches state-of-the-art performance from
end-to-end backpropagation on MNIST and CIFAR-10, and
showed that it learns powerful classifiers using almost only
weak pairwise labels. This modular learning framework en-
ables fully modularized DL workflows. We then demonstrated
the benefit of such a workflow in a transfer learning setting,
where the transferability among 15 binary classification tasks
from CIFAR-10 were to be estimated. Our simple approach
accurately described the task space structure using a fraction
of target task training data with practically no computation
overhead.
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APPENDIX
1. Proving Theorem [IV.

Lemma A.l. Given an inner product space H, a unit vector
e € H, and four other vectors vi,v_,v}, and v* with

Ivillz = lv-llz = [IWille = [vEllm > 0, where the
norm is the canonical norm induced by the inner product,
ie, ||ul|?% = (u,u)g,Vu € H. Assume
vy —v_|lag <|vi —=vZ]a. (24)
Then there exists a unit vector €* € H such that
(e,vi)g < (", V1)H; (25)
(e,v_)g > (e*, v )y (26)

Proof. Throughout, we omit the subscript H on inner products

and norms for brevity, which shall cause no ambiguity since

no other inner product or norm will be involved in this proof.
If vi = v*, then ||[vi — v* | = 0, which would imply

lvi —v_||=0<= vy =v_. (27)

Then we may choose e* such that (e*, v’ ) = (e, v, ) and the
result holds trivially.

On the other hand, if v} = —v%, e* = v} /|[vi| would
be a valid choice of e*. Indeed, by Cauchy-Schwarz,

*

(28)
(29)

(", vi) = Ivill = (e, v);
(" vi) = —|vi] < {e,v-).

Therefore, we may assume that v # v*.

For two vectors a, b, we define the “angle” between them,
denoted 6 € [0, ], via cos@ := (a,b)/(||al|||b]|). This angle
is well-defined since cos is injective on [0, 7].

Since

1 2 1o 1 2
(a,b) = —lla = b|[* + Sllall* + 5 [Ib]% Va,b,  (30)
[vell = [v-ll = IIvill = [IvZll > 0 and |v4 —
v_| < [[v} —v* | together implies (v, v_)/([[v4[[lv-[]) =
(v, v2)/([Ivilll[vx]]), which then implies § < 6* since cos
is strictly decreasing on [0, 7|, where 6 is the angle between
vy, v_ and 0* is the angle between v, v*.

Let v+ be the angle between e, v, and ~y_ that between

e,v_. Note that y_ — 4 € [0, 7r]. Define

p:=(e,vy) = [[vi] cosvy; (€29)
n:=(e,v_) = |v_| cosvy_. (32)
Now, suppose that we have shown
V- =7+ <6 (33)
Je* st v — 47 = 0% and v =_, (34)

where 77 is the angle between e*, v} and v* that between
e*, v* . Define:

(35)

p* = (e",vi) = [[Vi] cosvi;
n* (36)

= (%, vE) = [|[v: ] cos .

Then using |[v_|| = |[vX|| > 0 and the earlier result that
6 < 6*, we would have

n=n*; (37)

ST (38)

which, together with the fact that cos is strictly decreasing on
[0, 7] and the assumption that ||v|| = ||vi| > 0, implies

n=n"; (39)

p<p, (40)

proving the result.

To prove Eq.[33] it suffices to show cos(y_ — ;) > cosf
since cos is decreasing on [0, 7], to which both v_ — ~4 and
0 belong. To this end, we have

cos(y— — y4) = cosy_ cos vy + siny_ siny4 41)

_ Ul = p?) (v — n?)
v v [V lIPllv—][?
(42)
Since [[vi|* —p® = [[v4[® +p* = 2p* = |vi|? +p* —

2ple,vy) = ||vy — pe|? and similarly ||[v_||> —n? = ||v_ —
nel|?,

n + [|[Ve — pel|||[v- — ne
sy Pt llve —pellv- —nel
[vill[v-]
7pn+(v+—pe,v,—ne> 44)
[Vl lv-I]
[vlllv-]
= cos ¥, (46)

where the inequality is due to Cauchy-Schwarz.
To prove it suffices to show that there exists e* such
that

A one of v} —p*e*,v* —n*e* is a scalar multiple of the

other;

B cosy* = cosvy_.

Indeed, [A| implies [|[v} — p*e*||||[v: — n*e*|| = (v} —
pre*,v* — n*e*), which, together with similar arguments as
we used to prove Eq. implies v* — v} = 0*. Also note
that [B] is equivalent to n = n*.

We prove existence constructively. Specifically, we set e* =
av’ +bv* ,a,b € R and find a, b such that e* satisfies [A| and
[B] simultaneously.

Let s = (vi,v:),r = [|[vi|* = |[vX]® Note that we
immediately have:

r>0;ls| < 47)

The assumption v # £v* implies |s| < r.
Since e* is a unit vector, we have the following constraint
on a,b:

a’r + b?r + 2abs = 1. (48)

And some simple algebra yields
p* = ar + bs; (49)
n* = as + br. (50)
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To identify those a,b such that |§| holds, we first rewrite
v} —p*e* and v* — n*e* as follows.

vi —p'e* =vi — (ar +bs)(avi +bvY) (51)
= (1 —a®r — abs)v’ + (—abr — b?s)v*. (52)

Similarly,
v —n*e* = (—a’s —abr)v’ + (1 —abs — b*r)v*. (53)

Define
wy 4 = 1—a’r — abs; (54)
wy — 1= —abr — b2s; (55)
Wo 4 1= —a%s — abr; (56)
wo,_ :=1—abs — b2r. 57)

Then we have

Vi —pret =wi Vi fwy Vi (58)
Vi —ntet = wy 4V +wa _vE. (59)

Assuming none of wy y,wi,—,ws 1, we — is 0, |§| is equiv-
alent to

W1,4+W2,— = W1,-W2 4. (60)
To check that this is always true, we have
w14 W, — (61)
= a®brs + ab®rs + a®b*s* + a*b*r? — 2abs — r(a® + V%) +
(62)
= a®brs + ab’rs + a*b*s* + a*b*r? (63)
because of Eq. 48] And
Wi, _Wao 4 = albrs + ab®rs + a?b%s? + a?b*r2. (64)

Therefore, [A] is always true.
If at least one of wy 4, wy,—,wa 4, wo _ is 0, we have the
following mutually exclusive cases:

i one of the four coefficients is 0 while the other three are

not; X
ii w4 = wy,— =0, the others are not 0; v
iii wo 4 = wy _ = 0, the others are not 0; v
iv wy 4 = wy,_ = 0, the others are not 0; X
v wi,— = w4+ = 0, the others are not 0; X
vi wi 4 = wy 4 = 0, the others are not 0; v
vii wy,— = wg,_ = 0, the others are not 0; v
viii three of the four coefficients are 0 while one is not; v
X w4 =w,_=wyp=wp_=0, V

where the cases marked with X are the ones where |A| cannot be
true (so our choice of a, b cannot fall into these cases) and the
ones marked with v are the ones where [Alis true. Note that [A]
cannot be true in cases [iv]and [v] because if[A] was true, it would
imply that v and v* are linearly dependent. However, since
[Vl = [[v*]|, we would have either v = v* or v} = —v*,
both of which have been excluded from the discussion in the
beginning of this proof.

Therefore, [A] is satisfied by any a, b that satisfy Eq. @8] but
none of case and

We now turn to the search for a, b such that [B] holds. [B] is
equivalent to

1
as+br=n<=b=—(n—as).
T
Therefore, finding a, b such that [A] and [B] hold simultane-
ously amounts to finding a, b such that

1

(65)

b= ;(n —as); (66)
a’r + br + 2abs = 1; (67)
none of case is true. (68)

Now, substituting b = (n — as)/r into Eq. [67| and solving

for a, we have
2

2 T—n
CEEoe ©
and we choose
r—n?
a= ol (70)
This root is real since n = (e,v_) and therefore n? =
rcos?y_ <r.
To verify that
r—n? 1
a = m7b:;(n—as). (71)

satisfies [68] first note that since this solution of a,b comes
from solving n = n* and Eq. [67] we have

wy,4+ =1 —a(bs + ar) = b(br + as) = bn; (72)
wy,—  b(bs + ar); (73)
wa + x alas + br) = an; (74)
wy,_ =1—>blas+br)=1—bn. (75)

We now analyze each one of case and [V] individually
and show that our choice of a,b does not fall into any of
them, proving that this particular a, b satisfies Eq. [66] [67] and
condition
case [it

If wy+ = 0, then either b = 0 or n = 0, resulting in
wy,— x b(bs+ar) =0 or wy + x an = 0, i.e., there must be
at least 2 coefficients being 0.

If wy,— = 0, then either b = 0, in which case wy 4 =0, or
bs + ar = 0. In the latter case, we would then use Eq. and
have

abs + a*r =0 = b*r +abs = 1 = b(br +as) =bn = 1

= wy,_ =1-bn=0.
(76)

Again, we would have at least 2 nonzero coefficients.

If ws + = 0, then either n = 0, which would result in
wy 4+ = bn =0, or a = 0. Assuming a = 0, Eq. would
imply n = +4/r and b = n/r. Either way, we would have
b=1/n and therefore wy _ =1 —bn = 0.

Finally, if wy — = 0, then first assuming n # 0, we would
have b = 1/n. Then Eq. [71] would give 1/n = (n — as)/r.
Solving for a, we have a = (n? — r)/(ns). r > n? would
imply that a < 0. On the other hand, Eq. [7]] also implied
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a > 0. Hence, a must be 0, in which case wg 4+ o< an = 0. If
n = 0, we would have wy 1 = 0 as well.
case [ivt

It is easy to see that this case is impossible since wi 4 +
Wo — = 1.
case

If wi,— = wy 4 = 0, then we have already shown in the
proof of case il that either w; 4 or wo — must be 0, that is, at
least 3 coefficients would be 0.

In summary, we have found an e* such that [A] and [B] hold
simultaneously, proving [34] O

We now prove Theorem [[V1]

Proof. The result amounts to proving
L(f3 o F3,8) < L(f2 0 F1, ),V fa, F1. (77

Define S, to be the set of all x; such that ¢ € I and S_
the set of all x; such that j € I_. Let k = L 3" | 1yeq, 5,
we have

L(f2 OFl*,S)

< hty (f20 Fr0e) + (1- 0 (fo0 FY(x")
+ Ag(lwl) (78)
= kly (<||w||’¢)i> lwll + b) (79)

= (e ) Iwl ) + da(wl)

for some x* ,x* from S.,S_, respectively, where ®} :=
® (Fy(x%)) and @* = @ (Fy(x2)).
For any f4 o FY, let f} be parameterized by w’,b’. We have

L(fz 0 Y, 5)

> wly (fy0 FI(x})) + (1= k)l (f30 F/(x1))
+ Ag([[w[]) (80)
= Kl (<|:VV,H,¢;> W' + b’> (81)

=0 (o @Y W8 )+ 2g(Iw)

for x/_,x’ with x/_ maximizing f; o F{(x;) over x; € S
and x’_ minimizing f; o F{(x;) over x; € S_, where ®/_ :=
® (F{(x/.)) and & := & (F{(x_)).

Using the assumption on FY,

9% — @ || > ||@) — L. (82)
Then using Lemma there exists a unit vector e* such
that
(25> (ot ) ®
/
<e*,<I>*_>§< - ,<1>’_>. (84)
[[w|]
(85)

Let A := {w:
and we have,

L(f50 I}, 5)

lw|| = [|w’||}, then evidently, e*||w’| € A,

> kly ((e, @5 ) [|W']| + V) (86)
(L= Ry (e, @ ) W/ +5) + Ag (Iw'])
oW/ > " >
+<<e*||wf|| + ) el

e[|
+(1— Rt (<

Il
+ Ag (e[|

> min Kl (< Wl (I>1> lwl + b’)

= (e ) Il 40 ) + g )
> ip et (201 ) I +0)
= (e ) Il +) + g (1wl

<1>t> et w1l + b')

(88)

(89)

(90)

> min L Fy 1
_wnelTAnJ) (f?o 175) (9 )
> min L(f o Y, 5) 92)
= L(f5 o F},95). (93)
This proves the result. O

2. Example Loss Functions Satisfying Conditions of The-
orem

The empirical risk of many popular loss functions can
be decomposed into two terms with one nondecreasing and
the other nonincreasing such that the condition required by
Theorem [V1] is satisfied.

o softmax + cross-entropy (two-class version):

n

(F.S) = 3" “Ljiery In (0 (F(x)

i=1

~Lpier yIn(1 -0 (F(x:)))

1 1
=-Y1 (—F(xn 1) =% (F(xj) 1)
- nile + +n nile +1),

i€l jel_
95)

(94)

where o is the softmax nonlinearity.

« tanh + mean squared error (this decomposition works for
any monotonic nonlinearity with the value of y; adjusted
for the range of the nonlinearity):

$)= =3 (5~ 8 (Fx)’
% > (146 (F(x)?

jeI_

(96)

o7)

where § is the hyperbolic tangent nonlinearity.
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« hinge loss:

U(F,S) = %Zmax(o, 1 -y F(x:)) (98)

=1

= % Z max(0,1 — F(x;)) + % Z max (0,1 + F(x;)).

i€l jel_
99)

3. Additional Transferability Results
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