
LETTER Communicated by Yunlong Feng

On Kernel Method–Based Connectionist Models and
Supervised Deep Learning Without Backpropagation

Shiyu Duan
michaelshiyu3@gmail.com
Shujian Yu
yusjlcy9011@ufl.edu
Department of Electrical and Computer Engineering, University of Florida,
Gainesville, FL 32611, U.S.A.

Yunmei Chen
yun@math.ufl.edu
Department of Mathematics, University of Florida, Gainesville, FL 32611, U.S.A.

Jose C. Principe
principe@cnel.ufl.edu
Department of Electrical and Computer Engineering, University of Florida,
Gainesville, FL 32611, U.S.A.

We propose a novel family of connectionist models based on kernel ma-
chines and consider the problem of learning layer by layer a composi-
tional hypothesis class (i.e., a feedforward, multilayer architecture) in
a supervised setting. In terms of the models, we present a principled
method to “kernelize” (partly or completely) any neural network (NN).
With this method, we obtain a counterpart of any given NN that is pow-
ered by kernel machines instead of neurons. In terms of learning, when
learning a feedforward deep architecture in a supervised setting, one
needs to train all the components simultaneously using backpropagation
(BP) since there are no explicit targets for the hidden layers (Rumelhart,
Hinton, & Williams, 1986). We consider without loss of generality the
two-layer case and present a general framework that explicitly charac-
terizes a target for the hidden layer that is optimal for minimizing the
objective function of the network. This characterization then makes pos-
sible a purely greedy training scheme that learns one layer at a time,
starting from the input layer. We provide instantiations of the abstract
framework under certain architectures and objective functions. Based on
these instantiations, we present a layer-wise training algorithm for an l-
layer feedforward network for classification, where l ≥ 2 can be arbitrary.
This algorithm can be given an intuitive geometric interpretation that
makes the learning dynamics transparent. Empirical results are provided
to complement our theory. We show that the kernelized networks, trained

Neural Computation 32, 97–135 (2020) © 2019 Massachusetts Institute of Technology
https://doi.org/10.1162/neco_a_01250

98 S. Duan, S. Yu, Y. Chen, and J. Principe

layer-wise, compare favorably with classical kernel machines as well as
other connectionist models trained by BP. We also visualize the inner
workings of the greedy kernelized models to validate our claim on the
transparency of the layer-wise algorithm.

1 Introduction

One can “kernelize” any neural network (NN) by replacing each artificial
neuron (McCulloch & Pitts, 1943)—a function approximator of the form
f (x) = σ

(
w�x + b

)
—with a kernel machine—function approximator of the

form f (x) = 〈
w, φ (x)

〉
H + b with kernel function k (x, y) = 〈

φ (x), φ (y)
〉
H .

While the nonlinearities in deep NNs make it notoriously difficult to ana-
lyze these models, the simple interpretation of a kernel machine as a hyper-
plane in a reproducing kernel Hilbert space (RKHS) makes the kernelized
networks more tractable mathematically. We shall refer to the kernelized
NNs in general as kernel networks (KNs).

We then revisit the problem of learning a composite hypothesis class, by
which we mean a trainable model that consists of more elementary train-
able submodels, in a supervised learning setting. In this letter, we consider
only the special case of a compositional hypothesis class, in which the el-
ementary submodels are linked via function compositions, and therefore
the overall model can be written as F = Fl ◦ · · · ◦ F1 for some l, with each Fi

being a submodel with proper domain and codomain. For example, a deep
feedforward NN can be considered as a compositional hypothesis class.

When it comes to training these models, the usual method is to learn all
its trainable submodels simultaneously using, for example, backpropaga-
tion (BP; Rumelhart, Hinton, & Williams, 1986). However, in the context of
supervised learning, the need for BP is caused by the fact that there is no
explicit target information to tune the latent submodels (Rumelhart et al.,
1986). Moreover, when the model is large, BP usually becomes computa-
tionally intensive and can suffer from issues such as a vanishing gradient.
Also, BP returns very little information on the training of each submodel to
the user and therefore forces the user to treat the model as a black box. For
example, it is usually not possible to know which specific part or parts of
the network is responsible when the performance is suboptimal. Also, it is
extremely difficult to interpret or assess the hidden representations during
or after training.

We propose a novel training framework for compositional models that
enables learning via directly propagating the targets at the output layer to
the hidden layers in the optimal way, contrasting how BP trains via prop-
agating the derivative information with respect to the targets but not the
targets themselves. To be specific, we consider the problem of reducing
the compositional learning problem into a set of noncompositional ones
and then solving each one of them individually. We approach by deriving

On Kernel Networks and Deep Learning Without Backpropagation 99

explicit targets for the hidden submodels. The targets are optimal for min-
imizing a given objective function of the overall model. The central idea
can be summarized as follows: Let input data SX, supervision SY (labels in
classification, dependent variable in regression), a two-layer feedforward
architecture F2 ◦ F1, and an objective function R̃ (F2 ◦ F1 (SX) , SY) be given.
Define F�

2 ◦ F�
1 := argminF2◦F1 R̃ (F2 ◦ F1 (SX) , SY). If we could find functions

s, u, and a new objective R̃1(s (F1 (SX)) , u(SY)) whose minimizer is equiv-
alent to F�

1 for minimizing the objective R̃, then finding F�
1 is equivalent to

finding an F1 that minimizes R̃1. If the dependence of s and u on F2 can be
reduced to a point where this search for F�

1 does not involve the trainable
parameters of F2, then we have reduced the original compositional learning
problem into two noncompositional ones that can be solved sequentially.

As examples, we provide instantiations of the abstract framework and,
based on these instantiations, a sample greedy training algorithm for a
multilayer feedforward architecture for classification. This greedy learning
algorithm enjoys the same optimality guarantee as BP in the sense that both
effectively train each layer to minimize the overall objective. But the former
is faster, more memory efficient, and evidently less susceptible to vanishing
gradient. It also greatly increases the transparency of deep models: the
quality of learning in the hidden layers can be directly assessed during or
after training, providing the user with more information about training.
Also, alternative model selection and hyperparameter tuning paradigms
are now available since unsatisfying performance of the network can be
traced to a certain layer or layers, allowing the user to debug the layers
individually. Moreover, the target for each hidden layer in this algorithm
can be given an intuitive geometric interpretation, making the learning
dynamics transparent.

Empirical results are provided to complement our theory. First, we com-
pare KNs with classical kernel machines and show that KNs consistently
outperform support vector machines (SVMs) (Cortes & Vapnik, 1995) as
well as several SVMs enhanced by multiple kernel learning (MKL) algo-
rithms (Bach, Lanckriet, & Jordan, 2004; Gönen & Alpaydın, 2011). We then
fully or partly kernelized both fully connected and convolutional NNs and
trained them with the proposed layer-wise algorithm. The resulting KNs
compare favorably with their NN equivalents trained with BP, as well as
some other commonly used deep architectures trained with BP, together
with unsupervised greedy pretraining. We also visualize the learning dy-
namics and hidden representations in the greedy kernelized networks to
validate our claim on the transparency of the greedy algorithm.

2 Setting and Notations

We consider the following supervised setup. Let a realization of an inde-
pendent and identically distributed (i.i.d.) random sample be given: S =

100 S. Duan, S. Yu, Y. Chen, and J. Principe

{
(xn, yn)

}N
n=1, where (xn, yn) ∈ R

d0 × R. Denote {xn}N
n=1 as SX and

{
yn

}N
n=1 as

SY for convenience. We consider only real, continuous, symmetric, positive-
definite (PD) kernels (Schölkopf & Smola, 2001), which possess the repro-
ducing property k (x, y) = 〈

φ (x), φ (y)
〉
H , where H is the RKHS induced

by k. Further, we assume, for all kernels considered in all results, that
k (x, x) = c < +∞, ∀x, and that infx,y k (x, y) = a > −∞. It is straightfor-
ward to check using the Cauchy-Schwarz inequality that the first condition
implies maxx,y k (x, y) = c. Note that by construction of a PD kernel, we al-
ways have a < c.

For the rest of this letter, we use bold letters to denote vectors or vector-
valued functions. For random elements, we use capital letters to denote
the random element and lowercase letters a realization of it. Notations
similar to the following will be used whenever convenient. For a gen-
eral l-layer feedforward architecture Fl ◦ · · · ◦ F1 and for i = 2, 3, . . . , l, x ∈
R

d0 , Fi (x) := Fi ◦ · · · ◦ F1 (x). For any F, the shorthand F (SX) represents{
F (xn)

}N
n=1, and the same for F (SY). When there is no confusion, we sup-

press the dependence of any loss function on the example for brevity (i.e.,
for a loss function �); instead of writing � (f (x) , y), we write � (f).

Given a loss function � (f (x) , y), we define the risk as R(f) :=
E (X,Y)� (f (X) , Y) and an objective function R̃ (f (SX) , SY) to be a bound
on the risk that is computable using the given data only. In this letter, we
take any objective as given without rigorously justifying why it is a bound
of some risk since that is not the purpose of this letter. Nevertheless, the
objectives we use are fairly common, and the corresponding justifications
are routine. We make this distinction between risk and objective here as it
will be needed in later discussions.

3 Kernelizing a Neural Network

Kernel machines are parametric models defined as f (x) = 〈
w, φ (x)

〉
H + b

with kernel k (x, y) = 〈
φ (x), φ (y)

〉
H and w, b being the learnable weights

and φ being a map into the RKHS H. NNs are connectionist models de-
fined by arbitrarily combining the parametric base units defined as f (x) =
σ

(
w�x + b

)
with w, b being the learnable weights and σ a (usually nonlin-

ear) gating function. These base units are sometimes called neurons.
While NNs are flexible models and have strong, expressive power in

practice, they are notoriously difficult to analyze due to each nonlinear
neuron being a nontrivial function itself and the arbitrariness involved in
the overall architecture design. Kernel machines, in comparison, are much
more mathematically tractable since they are linear models in the feature
space H; that is, the f is linear in w. This allows one to reduce otherwise
abstract problems into geometric ones, making possible simpler and more
intuitive solutions. However, their architectures are not as flexible, and their

On Kernel Networks and Deep Learning Without Backpropagation 101

Figure 1: Any NN (left, presented in the usual weight-nonlinearity abstraction)
can be abstracted as a “graph” (right) with each node representing a neuron and
each edge the input-output relationship between neurons. If a node receives
multiple inputs, we view its input as a vector in some Euclidean space, as in-
dicated by the colored rectangles. Under this abstraction, each neuron can be
directly replaced by a kernel machine mapping from the same Euclidean space
into the real line without altering the architecture and functionality of the model.

practical performance in most cutting-edge machine learning applications
has been unsatisfying (Bengio, Courville, & Vincent, 2013).

The question we consider is how to combine the idea of connectionism,
which is central to NNs, with kernel machines and build families of mod-
els that are flexible, expressive, and at the same time more mathematically
tractable than NNs. We hope this will be a first step toward explaining why
deep learning performs so well in the most challenging AI tasks.

In this section, we discuss how to kernelize an NN to build models that
combine the best of both worlds. We first present the generic approach and
then, as an example, concretely define a fully kernelized multilayer per-
ceptron (MLP). To further shed light on the effect of kernelization on the
expressive power of the original model, we give an analysis on the model
complexity of a fully kernelized MLP.

3.1 A Generic Approach to Kernelization. The general idea we adopt
is to build connectionist models with the base units being not neurons but
kernel machines. This is mathematically viable since in an NN, any neuron
can be directly replaced by a kernel machine without altering the architec-
ture and functionality of the network. An illustration of this kernelization
procedure is provided in Figure 1. In this way, one can kernelize an NN
to any degree: a node, several nodes, a layer, several layers, or the entire
network.

KN is flexible in the sense that one can inject prior knowledge into the
architecture design, as is done for NNs. KN inherits the expressive power of
the original NN since a kernel machine is a universal function approximator

102 S. Duan, S. Yu, Y. Chen, and J. Principe

under mild conditions (Park & Sandberg, 1991; Micchelli, Xu, & Zhang,
2006). Moreover, KN works in a more mathematically intuitive way since
each base unit is a simple linear model in an RKHS.

Further, a general criticism toward kernel methods in machine learning
is that their performance usually relies heavily on the parameterization of
the kernels used. This issue is mitigated in KN, thanks to the introduction of
connectionism. To be specific, KN performs nonparametric kernel learning
alongside learning to perform the given task. Indeed, to build the network,
one needs only generic kernels, but in a connectionist model, the kernels
on the noninput layers admit the form k (F (x), G (y)), where F, G are some
other trainable submodels. The fact that F, G are trainable makes this ker-
nel “adaptive,” mitigating to some extent any limitation of the fixed generic
kernel k. The training of F and G makes this adaptive kernel optimal as a
constituent part of the corresponding kernel machine for the task the net-
work was trained for. And it is always a valid kernel if the generic kernel
k is. Note that observations similar to this one have been made in different
contexts by, for example, Huang and LeCun (2006) and Bengio et al. (2013).
We include it here only for completeness.

3.2 Kernelized MLP: The Architecture. As a more concrete example,
we now define a fully kernelized l-layer MLP, which we specifically refer
to as kernel MLP (kMLP).1

The l-layer kMLP is defined as follows. For i ≥ 1, the ith layer in a
kMLP, denoted Fi, is an array of di kernel machines: Fi : Rdi−1 ← R

di , Fi(x) =
(f 1

i (x), f 2
i (x), . . . , f di

i (x)) with the f j
i all using kernel ki. Let F0 be the iden-

tity map on R
d0 . Each f j

i : Rdi−1 ← R is a hyperplane in RKHS Hi: f j
i (x) =

〈w f j
i
, φi(Fi−1 ◦ · · · ◦ F0(x))〉Hi + b f j

i
, w f j

i
∈ Hi, b f j

i
∈ R. The set of mappings

{
Fl ◦ · · · ◦ F1 : w f j

i
∈ Hi, b f j

i
∈ R for all admissible n, j, i

}

defines an l-layer kMLP.
In practice, w f j

i
is usually not accessible but can be approximated us-

ing, for instance,
∑N

n=1 α
j
i, nφi (Fi−1 ◦ · · · ◦ F0 (xn)), where the α

j
i, n ∈ R are the

learnable parameters.2

3.3 Kernelized MLP: Model Complexity. We give a bound on the
model complexity of an l-layer kMLP using a well-known complexity

1
A PyTorch-based (Paszke, Gross, Chintala, & Chanan, 2017) library for implementing

KN and the proposed layer-wise training algorithm is available at https://github.com
/michaelshiyu/kerNET.

2
The optimality of this expansion can be justified in the following layer-wise setting

by directly applying the representer theorem (Schölkopf, Herbrich, & Smola, 2001).

On Kernel Networks and Deep Learning Without Backpropagation 103

measure, gaussian complexity (Bartlett & Mendelson, 2002). In particular,
the bound describes the relationship between the depth and width of the
model and the complexity of its hypothesis class, providing insights into
the effect of kernelization on the expressive power of the model, as well
as useful information for model selection. We first review the definition of
gaussian complexity.

Definition 1 (Gaussion Complexity). Let X1, . . . , XN be i.i.d. random ele-
ments defined on metric space X, and let F be a set of functions mapping from
X into R. Define

ĜN (F) = E

[
sup
f∈F

1
N

N∑
n=1

Zn f (Xi)

∣∣∣∣∣ X1, . . . , XN

]
,

where Z1, . . . , ZN are independent standard normal random variables. The gaus-
sian complexity of F is defined as GN (F) = E ĜN (F).

Intuitively, gaussian complexity quantifies how well elements in a given
function class can be correlated with a normally distributed noise sequence
of length N (Bartlett & Mendelson, 2002).

For proposition 1 and the lemma based on which this proposition is
proven (lemma 3 in appendix B), we impose the following smoothness as-
sumption on all kernels considered: for each fixed x ∈ R

di−1 , we assume that
ki (x, y), as a function of y, is Li, x-Lipschitz with respect to the Euclidean
metric on R

di−1 . Let supx∈Rdi−1 Li, x = Li, which we assume to be finite.

Proposition 1. Given an l-layer kMLP, approximate w f j
i

using

m∑
ν=1

α
j
i, νφi (F i−1 ◦ · · · ◦ F1 (xν)) ,

where the xν are an m-subset of SX , 1 ≤ m ≤ N, α j
i := (

α
j
i, 1, . . . , α

j
i, m

) ∈ R
m and

b f j
i

∈ R. Assume
∥∥α

j
i

∥∥
1 ≤ Ai and let dl = 1. Consider

F1 =
{

x �→
(

f 1
1 (x) , . . . , f d1

1 (x)
)

| f j
1 ∈ �, j = 1, . . . , d1

}
,

where � is a given hypothesis class of functions from R
d0 to R. Denote the class of

functions implemented by this kMLP as Fl-kMLP, if F1 ∈ F1, for i ≥ 2, we have

GN (Fl-kMLP) ≤ 2d1

l∏
i=2

AiLidiGN (�) .

104 S. Duan, S. Yu, Y. Chen, and J. Principe

It is worth noting that the model complexity kMLP grows in the depth
and width of the network in a similar way as that of an MLP (Sun, Chen,
Wang, Liu, & Liu, 2016). In particular, the expressive power of the model
increases linearly in the width of a given layer and roughly exponentially
in the depth of the network.

4 A Layer-Wise Learning Framework

We now formally present our greedy framework for learning compositional
hypothesis classes in a supervised setting. To simplify discussion, we first
consider the two-layer case:

F = {F = F2 ◦ F1 | Fi ∈ Fi, i = 1, 2} .

Define F�
1 ◦ F�

2 = F� := arg minF∈FR̃ (F (SX) , SY). The goal is to train the in-
put layer to find F�

1 (without touching the output layer), freeze the input
layer afterward, and then train the output layer to find F�

2.
To disentangle the training of the two layers, we must disentangle the

definitions of F�
1 and F�

2. The idea is to recharacterize F�
1, that is, derive con-

ditions under which F1 = F�
1, using no information on the trainable param-

eters of the output layer. Then we need to translate these conditions into
choosing a new loss �1 (inducing a new risk R1), a function s, and a function
u accordingly with the property that

arg min
F1∈F1

R1 (s (F1 (X)) , u (Y)) = F�
1

and that s, u do not rely on the trainable parameters of the output layer.
An objective R̃1 (s (F1 (SX)) , u (SY)) can be subsequently chosen, and we can
find F�

1 by training the input layer to minimize this new objective. This train-
ing process requires no tuning on the output layer as this new objective does
not involve the trainable parameters of that layer.

The recharacterization of F�
1 is dependent on F2 and R̃. Therefore, differ-

ent choices induce different instantiations of our general framework.
The search of u can be understood as the procedure of explicitly propa-

gating the targets SY to the hidden layers. This contrasts how BP trains via
propagating derivative information with respect to the targets but not the
targets directly.

We proceed by first describing the general framework and then, as exam-
ples, provide instantiations under a specific choice of F2 and two families
of objectives. Finally, based on these instantiations, we provide a sample
layer-wise training algorithm for learning an l-layer feedforward network
for classification, where l ≥ 2 can be arbitrary. This layer-wise algorithm is
simple to implement, and its learning dynamics enjoy an intuitive geomet-
ric interpretation.

On Kernel Networks and Deep Learning Without Backpropagation 105

4.1 The Framework. Let the architecture F and objective R̃ be given.
Our greedy learning framework for the two-layer compositional hypothesis
class consists of the following steps:

1. Finding F�
1

a. Define an equivalence relation between hypotheses.
b. Give an equivalent definition for F�

1 under the new equivalence
relation.

c. Recharacterize F�
1 for the given F under the given objective R̃.

d. Choose s, u, �1, and R̃1 accordingly.
e. Train the input layer to minimize R̃1 (s (F1 (SX)) , u (SY)).
f. After training, freeze the input layer at, say, F◦

1.

2. Finding F�
2

a. Train the output layer to minimize R̃
(
F2 ◦ F◦

1 (SX) , SY
)
.

We now provide more details for a couple of the listed steps.

Step 1a: Define an equivalence relation between hypotheses. In our framework,
we use the following definition of equivalence between hypotheses of the
input layer:

F1 = G1 if and only if min
F2∈F2

R̃ (F2 ◦ F1) = min
F2∈F2

R̃ (F2 ◦ G1) , ∀S.

It is easy to check that this is indeed an equivalence relation. Intuitively,
this means that we consider two hypotheses of the input layer to be equally
good if the best networks one can build with these two hypotheses min-
imize the objective function equally well (i.e., when they have the same
“potential”). Evidently, this notion of equivalence is proper and sufficient,
as we have no knowledge of F2 while we train the input layer.

Step 1b: Give an equivalent definition for F�
1 under the new equivalence relation.

Compared to the original minimizer definition of F�
1, it is easier to work

with the following more concrete definition under the equivalence relation
described in step 1a.

Lemma 1. Suppose F�
1 ∈ F

′
1 ⊆ F1 and F�

2 ∈ F
′
2 ⊆ F2. We have

F�
1 = arg min

F1∈F′
1

min
F2∈F′

2

R̃ (F2 ◦ F1) .

This definition is easier to work with when we later recharacterize F�
1

because it shrinks the range of F2 we need to consider for each F1 to only
the minimizer F2 under that specific F1.

4.2 Some Instantiations. We now provide instantiations of the greedy
learning framework under a specific family of F2 and two classes of objec-
tive functions. Note that these instantiations are certainly not all that can be

106 S. Duan, S. Yu, Y. Chen, and J. Principe

derived from our layer-wise framework. We leave the exploration of more
such instantiations as future work.

Steps 1a and 1b are the same for all instantiations. Therefore, the only
nontrivial steps in our framework to discuss for specific instantiations are
steps 1c and 1d.

The specific F2 we consider in this section is defined as the set of
functions of the following form: F2 (x) = (f 1

2 (x), . . . , f d2
2 (x)), f j

2 (x) = 〈w f j
2
,

φ(x)〉H + b f j
2

with kernel k (x, y) = 〈φ (x), φ (y)〉H , j = 1, . . . , d2, x, y ∈ R
d0 ,

where we have omitted and will continue to omit writing out explicitly the
function composition. For example, for x ∈ R

d0 , we write F2 (x) in place of
F2 (F1 (x)). There is no assumption needed on F1.

For these instantiations, we consider the case Y ∈ {+1, −1}, and we shall
use subscript + or − to indicate the class of a particular example, if needed.

4.2.1 Recharacterize F�
1 under Regularized Hinge Loss as Objective. Let

d2 = 1, and write f2 in place of F2 accordingly. Let the objective function
R̃ (f2 ◦ F1) be R̂ (f2 ◦ F1) + τ‖w f2‖H , where τ > 0 is a hyperparameter that
can be chosen as desired and

R̂ (f2 ◦ F1) = 1
N

N∑
n=1

� (f2 ◦ F1, (xn, yn))

with � (f2 ◦ F1, (xn, yn)) = max (0, 1 − yn f2 (xn)), the hinge loss. Let κ =
1
N

∑N
n=1 1{yn=+}. We now re-characterize F�

1:

Theorem 1. Assume that τ <
√

2(c − a) min (κ, 1 − κ) and that there exist
(x+, y+) , (x−, y−) ∈ S such that �

(
f �
2 ◦ F�

1, (xn, yn)
) = 0, n = +, −.

If F1 satisfies

k (F1 (x+), F1 (x−)) = a and

k
(
F1 (x), F1

(
x′)) = c (4.1)

for all pairs of x+, x− ∈ SX and all pairs of x, x′ ∈ SX with y = y′, then F1 = F�
1.

4.2.2 Recharacterize F�
1 under Regularized Supervised Representation Sim-

ilarity (SRS) Loss as Objective. Consider function h : Rd2 × R
d2 → R with

the property that h (x, y), as a function of x and y, has the following
properties:

• infx, y h (x, y) = b > −∞, supx, y h (x, y) = d < ∞, d > b.
• h depends only on ‖x − y‖q for some q ≥ 1, that is, h (x, y) =

h(‖x − y‖q).
• h strictly decreases in ‖x − y‖q for all x, y ∈ R

d2 with h (x, y) > b.

On Kernel Networks and Deep Learning Without Backpropagation 107

Define the following SRS loss:

�
(
F2 ◦ F1, (x, y), (x′, y′)

) = ∣∣g(
y, y′) − h

(
F2 (x) , F2

(
x′))∣∣p

,

where p ≥ 1 can be arbitrarily chosen and g (y, y′) = b if y �= y′ and d if oth-
erwise.

It is easy to see that this loss penalizes the similarity between images of
examples under the mapping F2 ◦ F1 based on their classes, hence, the name
supervised representation similarity.

Let the objective function be

R̃ (F2 ◦ F1) = 1
N2

N∑
n, m=1

� (F2 ◦ F1, (xn, yn), (xm, ym))

+ τt
(∥∥∥w f 1

2

∥∥∥
H
, . . . ,

∥∥∥w
f

d2
2

∥∥∥
H

)
,

where τ > 0 can be freely chosen and t can be any function that strictly
decreases in all of its arguments.

Theorem 2. Assume that there exist (x+, y+), (x−, y−) ∈ S such that

�
(
F�

2 ◦ F�
1, (x+, y+), (x−, y−)

) = 0. Also assume that for all j,
∥∥∥w f j�

2

∥∥∥
H

> 0.

If F1 satisfies

k (F1 (x+), F1 (x−)) = a; and

k
(
F1 (x), F1

(
x′)) = c (4.2)

for all pairs of x+, x− ∈ SX and all pairs of x, x′ ∈ SX with y = y′, then F1 = F�
1.

4.2.3 On Selecting s, u, �1, and R̃1. For both of the two objectives de-
scribed above, we may choose, for example, s to be the kernel function k,
u to be the function defined as u (y, y′) = a if y �= y′ and c if otherwise, and
�1 to be the SRS loss defined earlier with g set to u and h set to s,

�1
(
F1, (x, y), (x′, y′)

) = ∣∣u (
y, y′) − k

(
F1 (x), F1

(
x′))∣∣p

,

where p ≥ 1 can be freely chosen. This of course requires k to satisfy the
conditions on h for the resulting loss to be a valid SRS loss.

Under this selection of �1, it is evident that the minimizers of �1 (and also
R1) are all equal to F�

1 by theorems 1 and 2. R̃1 can be set to the empirical
SRS loss plus an arbitrary regularization term on norms of the weights.

4.2.4 Generalizing to l-Layer Feedforward Models with l ≥ 2. The general-
ization to a feedforward model with l layers, where l ≥ 2 can be arbitrary,
is trivial. To begin, treat Fl and Fl−1 ◦ · · · ◦ F1 as the earlier F2 and F1, re-
spectively. Then work as in the two-layer case to find an objective R̃l−1 for

108 S. Duan, S. Yu, Y. Chen, and J. Principe

Fl−1 ◦ · · · ◦ F1. This reduces the l-layer problem to an l − 1-layer problem.
Repeat this procedure on the rest of the layers until we return to the origi-
nal two-layer case.

4.3 A Layer-Wise Training Algorithm for an l-Layer (l ≥ 2) Feedfor-
ward Network for Classification. We can build on the instantiations a cer-
tified (in the sense that the optimality is guaranteed) layer-wise algorithm
for training an l-layer (l ≥ 2) feedforward network for classification tasks. In
this section, we describe this algorithm and show that it enjoys a geometric
interpretation that makes the learning dynamics transparent. Moreover, we
show that there is a simple acceleration method for the kernelized noninput
layers, making the architecture more practical.

We present this algorithm for binary classification. Nevertheless, as mul-
ticlass problems can be reduced to a set of binary classification problems by
using either the one-versus-all or the one-versus-one strategy (Schölkopf
& Smola, 2001), an extension of this algorithm to multiclass problems is
trivial.

The architecture considered is as follows:

{
fl ◦ · · · ◦ F1 : Rd0 → R | Fi (x) = (f 1

i (x), . . . , f di
i (x)),

f j
i (x) =

〈
w f j

i
, φi(x)

〉
Hi

+ b f j
i
, w f j

i
∈ Hi, b f j

i
∈ R,

∀l > i > 1, ∀ j, fl (x) = 〈
w fl , φl (x)

〉
Hl

+ b fl , w fl ∈ Hl, b fl ∈ R

}
.

Note that we have made no assumption on the input layer.
For i < l, define

R̃i (Fi) = 1
N2

N∑
n, m

�i (Fi, (xn, yn), (xm, ym))

+ τit
(∥∥∥w f 1

i

∥∥∥
Hi

, . . . ,

∥∥∥w
f

di
i

∥∥∥
Hi

)
,

where

�i (Fi, (xn, yn), (xm, ym)) = ∣∣u (yn, ym) − ki+1 (Fi (xn), Fi (xm))
∣∣p

.

p ≥ 1 can be chosen freely, τ > 0, u (y, y′) = a if y = y′ and c otherwise, and
t can be any function that strictly decreases in all of its arguments.

On Kernel Networks and Deep Learning Without Backpropagation 109

For i = l, define

R̃l (fl) = 1
N

N∑
n=1

�l (fl, (xn, yn)) + τl
∥∥w fl

∥∥
Hl

,

where

�l (fl, (xn, yn)) = max (0, 1 − yn fl (xn))

Then the training algorithm is given in algorithm 1.
The optimality of this training algorithm is justified by theorems 1 and 2

when the τi and ki satisfy the corresponding conditions for all i = 1, . . . , l.
We emphasize that this particular training algorithm gives great freedom

to the choice of F1: it can be any arbitrary architecture. In particular, it can
be a stack of multiple layers in practice. This stack can be trained with an
end-to-end method such as BP.

4.3.1 Geometric Interpretation of Learning Dynamics. The sufficient con-
ditions described by equations 4.1 and 4.2 can be interpreted geometri-
cally. Under an F1 satisfying these conditions, images of examples from
distinct classes are as distant as possible in the RKHS induced by k whereas
images of examples from the same class are as concentrated as possible (see,
the proof of theorem 1 in appendix B). Intuitively, such a representation is
the “easiest” for the classification task. And our earlier theorems essentially
justified this intuition in a rigorous fashion.

Therefore, the learning dynamics of this training algorithm can be given
a straightforward geometric interpretation: it trains each layer to push apart

110 S. Duan, S. Yu, Y. Chen, and J. Principe

examples from different classes while squeezing together those within the
same class. In other words, each layer learns a better representation of the
data. Eventually the output layer works as a classifier on the final hidden
representation.

4.3.2 Accelerating the Kernelized Layers. There is a natural method to
accelerate the kernelized noninput layers. The hidden targets are sparse
in the sense that for 1 ≤ i < l and any Fi satisfying equation 4.1 or
4.2, we have φi+1 (Fi (xm)) = φi+1 (Fi (xn)) if ym = yn and φi+1 (Fi (xm)) �=
φi+1 (Fi (xn)) if ym �= yn (see the proof of theorem 2 in appendix B).
Since we usually approximate w j

i+1 using
∑N

n=1 α
j
i+1, nφi+1 (Fi (xn)), re-

taining only one example from each class would result in exactly the

same hypothesis class Fi+1 because
{∑N

n=1 α
j
i+1, nφi+1 (Fi (xn)) | α j

i+1, n ∈ R

}
={∑

n=+, − α
j
i+1, nφi+1 (Fi (xn)) | α j

i+1, n ∈ R

}
for arbitrary x+, x− in SX.

Thus, after training a given layer, depending on how well its objective
function has been minimized, one may discard some of the centers for ker-
nel machines of the next layer to speed up the training of that layer without
sacrificing performance. This trick also has a regularization effect on the ker-
nel machines since the number of trainable parameters of a kernel machine
grows linearly in the number of its centers.

4.4 How Is Our Layer-Wise Framework Different from the Existing
Layer-Wise Pretraining Schemes? Existing layer-wise pretraining meth-
ods such as those proposed in Hinton, Osindero, and Teh (2006) and Ben-
gio, Lamblin, Popovici, and Larochelle (2007) require backpropagation (BP)
fine-tuning. This is because, to the best of our knowledge, no optimality
guarantee comparable to that provided by BP can be made for these pre-
training algorithms. In other words, the layer-wise pretraining commonly
used in the deep learning community does not necessarily learn the hypoth-
esis that minimizes the objective function for the network and thus can only
be used as an add-on to BP that helps BP converge faster.

In contrast, our work proves such optimality for our layer-wise train-
ing scheme in certain specific learning settings and therefore completely re-
moves the need for BP in these settings. To put this another way, even if one
applies BP after performing our layer-wise training, one will not (in theory)
end up with a hypothesis that is strictly better than the one learned by the
layer-wise learning process in terms of minimizing the objective function
of the network.

Coming up with a purely layer-wise substitute for BP is relevant be-
cause, as we have mentioned, BP can be computationally expensive and
its end-to-end nature makes it practically impossible to precisely trace the
source of unsatisfying performance and find out which layer or layers is
to be blamed. This can make the architecture search process lengthy and

On Kernel Networks and Deep Learning Without Backpropagation 111

sometimes painful. Furthermore, training all layers simultaneously com-
plicates the parameter space and may introduce more local minima to
the learning process, which can be another unwanted factor for gradient
descent–based learning. In contrast, a fully layer-wise training process al-
lows one to divide and conquer the learning problem and reveals more use-
ful information about training, mitigating the issues to some extent.

5 Related Work

The link between NNs and the kernel method has been long known. In Vap-
nik (2000) defined the hyperbolic tangent kernel and used it in SVM, leading
to an architecture equivalent to a shallow MLP. Suykens and Vandewalle
(1999) viewed MLP as an SVM by treating the hidden layer as the feature
map and proposed a modified support vector method to train the former.
More recently, Cho and Saul (2009) defined an “arc cosine” kernel to imitate
the computations performed by a one-layer MLP. Zhuang, Tsang, and Hoi
(2011) extended the idea to arbitrary kernels with a focus on MKL, using an
architecture similar to a two-layer kMLP. As a further generalization, Zhang
et al. (2017) proposed kMLP and fully kernelized CNN. However, they did
not extend the idea to more network architectures. These works essentially
combine kernel method with deep learning by substituting neurons in NNs
with kernel machines, which is similar to what we are pursuing in our work.
However, to the best of our knowledge, our work enjoys perhaps the great-
est generality among works that follow this line of research.

There are also works that attempt to integrate kernel method with deep
learning using other methods. Suykens (2017) drew connections between
restricted Boltzmann machines (RBM) and kernel machines by creating
RBM-like representations for the latter. The resulting restricted kernel ma-
chines (RKMs) are then combined to form deep RKMs. Mairal, Koniusz,
Harchaoui, and Schmid (2014) proposed learning hierarchical representa-
tions by learning mappings of kernels that are invariant to irrelevant varia-
tions in images. Hermans and Schrauwen (2012) used the kernel method to
expand the echo state networks to essentially infinite-sized recurrent neural
networks. The resulting network can then be viewed as a recursive kernel
that can be used in SVMs. Wilson, Hu, Salakhutdinov, and Xing (2016) pro-
posed to learn the covariance matrix of a gaussian process using an NN in
order to make the kernel “adaptive.” Such an interpretation of “adaptive”
kernels can be given to KNs as well. This idea also underlies the now stan-
dard approach of combining a deep NN with SVM for classification, which
was first explored by Huang and LeCun (2006) and Tang (2013) and can
be viewed as a special case of the proposed kernelization framework. In
terms of the training of such hybrid systems, there are mainly two meth-
ods. The first is to apply BP to the entire model (Tang, 2013), which enjoys
an optimality guarantee from BP but forces the SVM to be trained with gra-
dient descent instead of the more efficient optimization algorithms that are

112 S. Duan, S. Yu, Y. Chen, and J. Principe

usually used for SVMs. The alternative is to feed the hidden representations
from a trained NN to the SVM and train the latter in the usual way (Huang
& LeCun, 2006), but this practice is not theoretically solid. The proposed
layer-wise learning framework serves as another alternative that combines
the best of both worlds: one can train the NN and SVM separately with an
optimality guarantee as that given by BP.

Among works on improving or substituting BP in learning a deep archi-
tecture, most aim at improving the classical method, working as add-ons for
BP. The most notable ones are perhaps the unsupervised greedy pretraining
techniques proposed by Hinton et al. (2006) and Bengio et al. (2007). Among
works that try to completely substitute BP, none provided a comparable
optimality guarantee in theory as that given by BP. Fahlman and Lebiere
(1990) pioneered the idea of greedily learning the architecture of an NN. In
their work, each new node is added to maximize the correlation between
its output and the residual error signal. Several authors have explored the
idea of approximating error signals propagated by BP locally at each layer
or each node (Bengio, 2014; Carreira-Perpinan & Wang, 2014; Lee, Zhang,
Fischer, & Bengio, 2015; Balduzzi, Vanchinathan, & Buhmann, 2015; Jader-
berg et al., 2016). Erdogmus, Fontenla-Romero, Principe, Alonso-Betanzos,
and Castillo (2005) proposed an initialization scheme for BP that can also
be interpreted as propagating the targets at the output to the hidden layers.
Zhou and Feng (2017) proposed a BP-free deep architecture based on deci-
sion trees. Raghu, Gilmer, Yosinski, and Sohl-Dickstein (2017) attempted to
quantify the quality of hidden representations toward learning more inter-
pretable deep architectures, sharing a motivation similar to ours.

6 Experiments

We now demonstrate the competence of the kernelized models and the ef-
fectiveness of the proposed layer-wise framework via experiments. We will
be implementing the sample training algorithm described in section 4.3.
This section is divided into two parts. The first is dedicated to comparing
KNs with traditional kernel machines. In the second part, we compare KNs
with other popular connectionist models. These empirical results serve as
proofs of concept for the proposed architectures, as well as the greedy train-
ing framework.

6.1 Comparing KNs with Classical Kernel Machines. We now com-
pare a single-hidden-layer kMLP using simple, generic kernels with the
classical SVM and SVMs enhanced by MKL algorithms that used sig-
nificantly more kernels to demonstrate the competence of kMLP and, in
particular, its ability to perform well without excessive kernel parameter-
ization. The standard SVM and seven other SVMs enhanced by popular
MKL methods were compared (Zhuang et al., 2011), including the classical
convex MKL (Lanckriet, Cristianini, Bartlett, Ghaoui, & Jordan, 2004) with

On Kernel Networks and Deep Learning Without Backpropagation 113

kernels learned using the extended-level method proposed in Xu, Jin, King,
and Lyu (2009) (MKLLEVEL); MKL with Lp norm regularization over ker-
nel weights (Kloft, Brefeld, Sonnenburg, & Zien, 2011) (LpMKL), for which
the cutting plane algorithm with second-order Taylor approximation of
Lp was adopted; generalized MKL (GMKL) in Varma & Babu (2009), for
which the target kernel class was the Hadamard product of single gaus-
sian kernel defined on each dimension; infinite kernel learning (IKL) in
Gehler and Nowozin (2008) with MKLLEVEL as the embedded optimizer
for kernel weights; two-layer multilayer kernel machine (MKM) in Cho
and Saul (2009); and two-layer MKL (2LMKL) and infinite two-Layer MKL
(2LMKLINF) in Zhuang, Tsang, and Hoi (2011).

Eleven binary classification data sets that have been widely used in MKL
literature were split evenly for training and test and were all normalized to
zero mean and unit variance prior to training. Twenty runs with identical
settings but random weight initializations were repeated for each model.
For each repetition, a new training-test split was selected randomly.

For kMLP, all results were achieved using a greedily trained, one-
hidden-layer model with the number of kernel machines ranging from 3
to 10 on the first layer for different data sets. The second layer was a single
kernel machine. All kernel machines within one layer used the same gaus-
sian kernel (k (x, y) = e−‖x−y‖2/σ

2
), and the two kernels on the two layers

differed only in kernel width σ . All hyperparameters were chosen via five-
fold cross-validation. As for the other models compared, for each data set,
SVM used a gaussian kernel. For the MKL algorithms, the base kernels con-
tained gaussian kernels with 10 different widths on all features and on each
single feature and polynomial kernels of degree 1 to 3 on all features and on
each single feature. For 2LMKLINF, one gaussian kernel was added to the
base kernels at each iteration. Each base kernel matrix was normalized to
unit trace. For LpMKL, p was selected from {2, 3, 4}. For MKM, the degree
parameter was chosen from {0, 1, 2}. All hyperparameters were selected by
five-fold cross-validation.

From Table 1, kMLP compares favorably with other models, which vali-
dates our claim that it learns its own kernels nonparametrically, hence can
work well even without excessive kernel parameterization. Performance
difference among models can be small for some data sets, which is expected
since these data sets are all rather small and not too challenging. Neverthe-
less, it is worth noting that only two gaussian kernels were used for kMLP,
whereas all other models except for SVM used significantly more kernels.

6.2 Comparing KNs with NNs. In this section, we provide empiri-
cal results on comparing KN with NN. We first demonstrate the compe-
tence of kernelized NNs and the effectiveness of the layer-wise learning
method using kMLPs. We use the proposed layer-wise algorithm derived
from our greedy learning framework and Adam (Kingma & Ba, 2014) as the

114 S. Duan, S. Yu, Y. Chen, and J. Principe

Ta
bl

e
1:

A
ve

ra
ge

Te
st

E
rr

or
(%

)a
nd

St
an

d
ar

d
D

ev
ia

ti
on

(%
)f

ro
m

20
R

un
s.

Si
ze

/
D

im
en

si
on

SV
M

M
K

LL
E

V
E

L
L

p M
K

L
G

M
K

L
IK

L
M

K
M

2L
M

K
L

2L
M

K
LIN

F
kM

L
P-

1

B
re

as
t

68
3/

10
3.

2
±

1.
0

3.
5
±

0.
8

3.
8
±

0.
7

3.
0
±

1.
0

3.
5
±

0.
7

2.
9
±

1.
0

3.
0
±

1.
0

3.
1
±

0.
7

2.
4
±

0.
7

D
ia

be
te

s
76

8/
8

23
.3
±

1.
8

24
.2
±

2.
5

27
.4
±

2.
5

33
.6
±

2.
5

24
.0
±

3.
0

24
.2
±

2.
5

23
.4
±

1.
6

23
.4
±

1.
9

23
.2
±

1.
9

A
us

tr
al

ia
n

69
0/

14
15

.4
±

1.
4

15
.0
±

1.
5

15
.5
±

1.
6

20
.0
±

2.
3

14
.6
±

1.
2

14
.7
±

0.
9

14
.5
±

1.
6

14
.3
±

1.
6

13
.8
±

1.
7

Io
no

35
1/

33
7.

2
±

2.
0

8.
3
±

1.
9

7.
4
±

1.
4

7.
3
±

1.
8

6.
3
±

1.
0

8.
3
±

2.
7

7.
7
±

1.
5

5.
6
±

0.
9

5.
0
±

1.
4

R
in

gn
or

m
40

0/
20

1.
5
±

0.
7

1.
9
±

0.
8

3.
3
±

1.
0

2.
5
±

1.
0

1.
5
±

0.
7

2.
3
±

1.
0

2.
1
±

0.
8

1.
5
±

0.
8

1.
5
±

0.
6

H
ea

rt
27

0/
13

17
.9
±

3.
0

17
.0
±

2.
9

23
.3
±

3.
8

23
.0
±

3.
6

16
.7
±

2.
1

17
.6
±

2.
5

16
.9
±

2.
5

16
.4
±

2.
1

15
.5
±

2.
7

T
hy

ro
id

14
0/

5
6.

1
±

2.
9

7.
1
±

2.
9

6.
9
±

2.
2

5.
4
±

2.
1

5.
2
±

2.
0

7.
4
±

3.
0

6.
6
±

3.
1

5.
2
±

2.
2

3.
8
±

2.
1

L
iv

er
34

5/
6

29
.5
±

4.
1

37
.7
±

4.
5

30
.6
±

2.
9

36
.4
±

2.
6

40
.0
±

2.
9

29
.9
±

3.
6

34
.0
±

3.
4

37
.3
±

3.
1

28
.9
±

2.
9

G
er

m
an

10
00

/
24

24
.8
±

1.
9

28
.6
±

2.
8

25
.7
±

1.
4

29
.6
±

1.
6

30
.0
±

1.
5

24
.3
±

2.
3

25
.2
±

1.
8

25
.8
±

2.
0

24
.0
±

1.
8

W
av

ef
or

m
40

0/
21

11
.0
±

1.
8

11
.8
±

1.
6

11
.1
±

2.
0

11
.8
±

1.
8

10
.3
±

2.
3

10
.0
±

1.
6

11
.3
±

1.
9

9.
6
±

1.
6

10
.3
±

1.
9

B
an

an
a

40
0/

2
10

.3
±

1.
5

9.
8
±

2.
0

12
.5
±

2.
6

16
.6
±

2.
7

9.
8
±

1.
8

19
.5
±

5.
3

13
.2
±

2.
1

9.
8
±

1.
6

11
.5
±

1.
9

R
an

k
-

4.
2

6.
3

7.
0

6.
9

4.
3

5.
4

5.
0

2.
8

1.
6

N
ot

es
:R

es
ul

ts
w

it
h

ov
er

la
pp

in
g

95
%

co
nfi

d
en

ce
in

te
rv

al
s

(n
ot

sh
ow

n)
ar

e
co

ns
id

er
ed

eq
ua

lly
go

od
.B

es
tr

es
ul

ts
ar

e
m

ar
ke

d
in

bo
ld

.T
he

av
er

ag
e

ra
nk

s
(c

al
cu

la
te

d
us

in
g

av
er

ag
e

te
st

er
ro

r)
ar

e
pr

ov
id

ed
in

th
e

bo
tt

om
ro

w
.D

ue
to

th
e

lim
it

ed
si

ze
s

of
th

e
d

at
a

se
ts

,w
e

po
ol

ed
th

e
20

ra
nd

om
sa

m
pl

es
w

he
n

co
m

pu
ti

ng
co

nfi
d

en
ce

in
te

rv
al

s.

On Kernel Networks and Deep Learning Without Backpropagation 115

Figure 2: From left to right: example from rectangles, rectangles-image, convex,
mnist (50k test) and mnist (50k test) rotated.

underlying optimization algorithm. We show that this algorithm, albeit
only having been certified under certain families of objectives, works well
with most popular objective functions in practice. We then compare kMLPs
trained with BP and the layer-wise algorithm to show the effectiveness of
the latter. Finally, to showcase the competence of the greedily trained ker-
nelized models, we compare kMLPs learned layer-wise with other popular
deep architectures including MLPs, deep belief networks (DBNs; Hinton &
Salakhutdinov, 2006), and stacked autoencoders (SAEs; Vincent, Larochelle,
Lajoie, Bengio, & Manzagol, 2010), with the last two trained using a combi-
nation of unsupervised greedy pretraining and standard BP (Hinton et al.,
2006; Bengio et al., 2007). We also visualize the learning dynamics of greedy
kMLPs and show that it is intuitive and simple to interpret. In the second
part of the experiments, we partially kernelize the classic LeNet-5 (LeCun,
Bottou, Bengio, & Haffner, 1998) and compare it with the original to val-
idate our claim that the proposed kernelization and training algorithm is
flexible in the sense that it works well with any given feedforward NN ar-
chitecture and one can freely decide the degree of kernelization. The hidden
representations learned from the two models are visualized. We show that
the hidden representations learned by the kernelized model are much more
discriminative than that from the original.

6.2.1 Part 1: Kernelizing MLPs. In terms of the data sets used, rectangles,
rectangles-image and convex are binary classification data sets, and mnist (50k
test) and mnist (50k test) rotated are variants of MNIST. fashion-mnist is the
Fashion-MNIST data set (Xiao, Rasul, & Vollgraf, 2017). These data sets
all contain 28 × 28 grayscale images. In rectangles, and rectangles-image, the
model needs to learn if the height of the rectangle is longer than the width,
and in convex, if the white region is convex. Examples from these data sets
are shown in Figure 2. In actual training, no preprocessing method was
used. As for the specific kernels used, we used gaussian kernels (k (x, y) =
e−‖x−y‖2/σ

2
) for the kernelized models for all our experiments. To ensure that

the comparisons with other models are fair, we used the regularized (two-
norm regularization on weights) cross-entropy loss as the objective function
for the output layer of all models. More details are in appendix A.

116 S. Duan, S. Yu, Y. Chen, and J. Principe

We first test the effect of using different hidden loss functions with a two-
hidden-layer kMLP. The three-hidden-layer loss functions tested include
the proposed SRS-1 loss (i.e., the SRS loss with p = 1), the SRS-2 loss, and
the empirical alignment (Cristianini, Shawe-Taylor, Elisseeff, & Kandola,
2002) between Gi and G�, where i is the hidden layer being optimized. Gi

is the kernel matrix of ki+1 computed on Fi (SX) and G� is the kernel matrix
induced by g on SX. The regularization term was always chosen to be the
sum of the L2 norms of the weights. On convex, this kMLP achieved a test
error rate of 19.36%, 18.53%, and 21.70% using alignment, SRS-2, and SRS-1
as the hidden losses, respectively. As a baseline, our best two-hidden-layer
MLP achieved an error rate of 23.28% on this data set. For the rest of our
experiments, we use the best result from these three hidden losses for our
greedily trained models.

We now test the layer-wise learning algorithm against BP using the stan-
dard MNIST data set (LeCun, Cortes, & Burges, 2010). Results from several
MLPs were added as benchmarks. These models were trained with Adam
or RMSProp (Tieleman & Hinton, 2012), and extra training techniques
such as dropout (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhut-
dinov, 2014) and batch normalization (BN; Ioffe & Szegedy, 2015) were ap-
plied to boost performance. kMLPs accelerated using the proposed method
(kMLPFAST) were also tested, for which we randomly discarded some cen-
ters of each noninput layer before its training. Two popular acceleration
methods for kernel machines were compared, including using a paramet-
ric representation (kMLPPARAM), that is, for each node in a kMLP, f (x) =∑m

n=1 αnk (wn, x), αn, wn learnable and m a hyperparameter, and using ran-
dom Fourier features (kMLPRFF; Rahimi & Recht, 2008).

Results in Table 2 validate the effectiveness of our layer-wise algorithm.
For both the single-hidden-layer and the two-hidden-layer kMLPs, the
layer-wise algorithm consistently outperformed BP. The layer-wise method
is also much faster than BP. In fact, it is practically impossible to use BP
to train kMLP with more than two hidden layers without any accelera-
tion method due to the computational complexity involved. Moreover, it
is worth noting that the proposed acceleration trick is clearly very effective
despite its simplicity and even produced models outperforming the original
ones, which may be due to its regularization effect. This shows that kMLP,
together with the greedy learning scheme, can be of practical interest even
when dealing with the massive data sets in today’s machine learning.

From Table 3, we see that the performance of kMLP is on par with some
of the most popular and most mature deep architectures. In particular, the
greedily trained kMLPs compared favorably with their direct NN equiva-
lents, the MLPs, even though neither batch normalization nor dropout was
used for the former.

In Figure 3, we visualize the learning dynamics within a two-hidden-
layer kMLP learned layer-wise. Since by construction of the gaussian ker-
nel, the image vectors are all of unit norm in the RKHS, we can visualize the

On Kernel Networks and Deep Learning Without Backpropagation 117

Ta
bl

e
2:

Te
st

in
g

th
e

Pr
op

os
ed

L
ay

er
-W

is
e

A
lg

or
it

hm
an

d
A

cc
el

er
at

io
n

M
et

ho
d

on
M

N
IS

T.

M
L

P-
1

M
L

P-
1

M
L

P-
2

M
L

P-
2

kM
L

P-
1

kM
L

P-
1

kM
L

P-
1R

FF

(R
M

SP
ro

p+
B

N
)

(R
M

SP
ro

p+
d

ro
po

ut
)

(R
M

SP
ro

p+
B

N
)

(R
M

SP
ro

p+
d

ro
po

ut
)

(B
P)

(G
R

E
E

D
Y

)
(B

P)

2.
05
±

0.
28

1.
77
±

0.
26

1.
58
±

0.
24

1.
67
±

0.
25

3.
44
±

0.
36

1.
77
±

0.
26

2.
01
±

0.
28

kM
L

P-
1PA

R
A

M
kM

L
P-

1FA
ST

kM
L

P-
2

(B
P)

kM
L

P-
2

(G
R

E
E

D
Y

)
kM

L
P-

2R
FF

kM
L

P-
2PA

R
A

M
kM

L
P-

2FA
ST

(B
P)

(G
R

E
E

D
Y

)
(B

P)
(G

R
E

E
D

Y
)

(B
P)

(B
P)

(G
R

E
E

D
Y

)
1.

88
±

0.
27

1.
75
±

0.
26

(0
.5

4)
3.

66
±

0.
37

1.
56
±

0.
24

1.
92
±

0.
27

2.
45
±

0.
30

1.
47
±

0.
24

(1
/0

.1
9)

N
ot

es
:T

he
nu

m
be

rs
fo

llo
w

in
g

th
e

m
od

el
na

m
es

in
d

ic
at

e
th

e
nu

m
be

ro
fh

id
d

en
la

ye
rs

us
ed

.F
or

kM
L

PFA
ST

,w
e

al
so

in
cl

ud
e

in
pa

re
nt

he
se

s
th

e
ra

ti
o

be
tw

ee
n

th
e

nu
m

be
r

of
tr

ai
ni

ng
ex

am
pl

es
ra

nd
om

ly
ch

os
en

as
ce

nt
er

s
fo

r
th

e
ke

rn
el

m
ac

hi
ne

s
on

th
e

la
ye

r
an

d
th

e
si

ze
of

th
e

tr
ai

ni
ng

se
t.

A
pa

rt
fr

om
kM

L
P-

2
(B

P)
,t

he
B

P
kM

L
P

re
su

lt
s

ar
e

fr
om

Z
ha

ng
et

al
.(

20
17

).
Fo

r
th

is
an

d
al

l
fo

llo
w

in
g

ta
bl

es
in

th
is

le
tt

er
,

th
e

en
tr

ie
s

co
rr

es
po

nd
to

te
st

er
ro

rs
(%

)
an

d
95

%
co

nfi
d

en
ce

in
te

rv
al

s
(%

).
R

es
ul

ts
w

it
h

ov
er

la
pp

in
g

co
nfi

d
en

ce
in

te
rv

al
s

ar
e

co
ns

id
er

ed
eq

ua
lly

go
od

.B
es

tr
es

ul
ts

ar
e

m
ar

ke
d

in
bo

ld
.

118 S. Duan, S. Yu, Y. Chen, and J. Principe

Ta
bl

e
3:

C
om

pa
ri

ng
kM

L
Ps

(T
ra

in
ed

Fu
lly

L
ay

er
-W

is
e)

w
it

h
M

L
Ps

an
d

O
th

er
Po

pu
la

r
D

ee
p

A
rc

hi
te

ct
ur

es
Tr

ai
ne

d
w

it
h

B
P

an
d

B
P

E
nh

an
ce

d
by

U
ns

up
er

vi
se

d
G

re
ed

y
Pr

et
ra

in
in

g.

M
ni

st
(5

0k
Te

st
)

R
ec

ta
ng

le
s

R
ec

ta
ng

le
s-

Im
ag

e
C

on
ve

x
M

ni
st

(5
0k

Te
st

)
R

ot
at

ed
Fa

sh
io

n-
M

ni
st

M
L

P-
1

(S
G

D
)

7.
16
±

0.
23

33
.2

0
±

0.
41

32
.2

5
±

0.
41

4.
69
±

0.
19

18
.1

1
±

0.
34

15
.4

7
±

0.
71

M
L

P-
1

(A
d

am
)

5.
37
±

0.
20

28
.8

2
±

0.
40

30
.0

7
±

0.
40

4.
71
±

0.
19

18
.6

4
±

0.
34

12
.9

8
±

0.
66

M
L

P-
1

(R
M

SP
ro

p+
B

N
)

5.
37
±

0.
20

23
.8

1
±

0.
37

28
.6

0
±

0.
40

4.
57
±

0.
18

18
.7

5
±

0.
34

14
.5

5
±

0.
69

M
L

P-
1

(R
M

SP
ro

p+
d

ro
po

ut
)

5.
50
±

0.
20

23
.6

7
±

0.
37

36
.2

8
±

0.
42

4.
31
±

0.
18

14
.9

6
±

0.
31

12
.8

6
±

0.
66

M
L

P-
2

(S
G

D
)

5.
05
±

0.
19

22
.7

7
±

0.
37

25
.9

3
±

0.
38

5.
17
±

0.
19

18
.0

8
±

0.
34

12
.9

4
±

0.
66

M
L

P-
2

(A
d

am
)

4.
36
±

0.
18

25
.6

9
±

0.
38

25
.6

8
±

0.
38

4.
42
±

0.
18

17
.2

2
±

0.
33

11
.4

8
±

0.
62

M
L

P-
2

(R
M

SP
ro

p+
B

N
)

4.
22
±

0.
18

23
.1

2
±

0.
37

23
.2

8
±

0.
37

3.
57
±

0.
16

13
.7

3
±

0.
30

11
.5

1
±

0.
63

M
L

P-
2

(R
M

SP
ro

p+
d

ro
po

ut
)

4.
75
±

0.
19

23
.2

4
±

0.
37

34
.7

3
±

0.
42

3.
95
±

0.
17

13
.5

7
±

0.
30

11
.0

5
±

0.
61

D
B

N
-1

4.
71
±

0.
19

23
.6

9
±

0.
37

19
.9

2
±

0.
35

3.
94
±

0.
17

14
.6

9
±

0.
31

N
/

A
D

B
N

-3
2.

60
±

0.
14

22
.5

0
±

0.
37

18
.6

3
±

0.
34

3.
11
±

0.
15

10
.3

0
±

0.
27

N
/

A
SA

E
-3

2.
41
±

0.
13

24
.0

5
±

0.
37

18
.4

1
±

0.
34

3.
46
±

0.
16

10
.3

0
±

0.
27

N
/

A
kM

L
P-

1
2.

24
±

0.
13

23
.2

9
±

0.
37

19
.1

5
±

0.
34

3.
10
±

0.
15

11
.0

9
±

0.
28

11
.7

2
±

0.
63

kM
L

P-
1FA

ST
2.

36
±

0.
13

(0
.0

5)
23

.8
6
±

0.
37

(0
.0

1)
20

.3
4
±

0.
35

(0
.1

7)
2.

95
±

0.
15

(0
.1

)
12

.6
1
±

0.
29

(0
.1

)
11

.4
5
±

0.
62

(0
.2

8)
kM

L
P-

2
2.

24
±

0.
13

23
.3

0
±

0.
37

18
.5

3
±

0.
34

3.
16
±

0.
15

10
.5

3
±

0.
27

11
.2

3
±

0.
62

kM
L

P-
2FA

ST
2.

21
±

0.
13

(0
.3

/0
.3

)
23

.2
4
±

0.
37

(0
.0

1/
0.

3)
19

.3
2
±

0.
35

(0
.0

05
/

0.
03

)
3.

18
±

0.
15

(0
.3

/
0.

3)
10

.9
4
±

0.
27

(0
.1

/
0.

7)
10

.8
5
±

0.
61

(1
/0

.2
8)

N
ot

es
:T

he
M

L
P-

1
(S

G
D

),
D

B
N

,a
nd

SA
E

re
su

lt
sa

re
fr

om
L

ar
oc

he
lle

,E
rh

an
,C

ou
rv

ill
e,

B
er

gs
tr

a,
an

d
B

en
gi

o
(2

00
7)

.N
ot

e
th

at
in

or
d

er
to

be
co

ns
is

te
nt

w
it

h
L

ar
oc

he
lle

et
al

.(
20

07
),

th
e

M
N

IS
T

re
su

lt
s

he
re

w
er

e
ob

ta
in

ed
us

in
g

a
tr

ai
n/

te
st

sp
lit

(1
0k

/
50

k)
m

or
e

ch
al

le
ng

in
g

th
an

w
ha

t
is

co
m

m
on

ly
us

ed
in

th
e

lit
er

at
ur

e.

On Kernel Networks and Deep Learning Without Backpropagation 119

Figure 3: Visualizing the learning dynamics in a two-hidden-layer kMLP. Each
entry in the kernel matrices corresponds to the inner product between the
learned representations of two examples in the RKHS. The labels are given on
the two axes. The examples used to produce this figure are provided in panel
a in the order of the labels plotted. The darker the entry, the more distant the
learned representations are in the RKHS.

distance between two vectors by visualizing the value of their inner prod-
uct. In Figure 3d, we can see that while the image vectors are distributed
randomly prior to training (see Figure 3c), there is a clear pattern in their
distribution after training that reflects the dynamics of training: the layer-
wise algorithm squeezes examples from the same class closer together while
pushing examples from different class farther apart. And it is easy to see
that such a representation would be simple to classify. Figures 3b and 3d
suggest that this greedy, layer-wise algorithm still learns “deep” represen-
tations: the higher-level representations are more distinctive for different
digits than the lower-level ones. Moreover, since learning becomes increas-
ingly simple for the upper layers as the representations become more and
more well behaved, these layers are usually easy to set up and converge
very fast during training.

6.2.2 Part 2: Kernelizing the Classic LeNet-5. We kernelize the output layer
of the classic LeNet-5 (LeCun et al., 1998) architecture and train it layer-
wise with all the layers but the output layer as one layer and the output
layer as a second layer. The nonoutput layers are trained with BP. This is
to demonstrate that our kernelization method and the layer-wise algorithm
are flexible in the sense that the former can be applied to only part of the
network and that the latter works well with partly kernelized models. Since
we are interested in evaluating the layer-wise algorithm on partly kernel-
ized NNs instead of pursuing state-of-the-art performance, we use the orig-
inal LeNet-5 without increasing the size of any layer or the number of lay-
ers. ReLU (Glorot, Bordes, & Bengio, 2011) and max pooling were used as
activations and pooling layers, respectively. Both models were optimized

120 S. Duan, S. Yu, Y. Chen, and J. Principe

Table 4: Kernelizing the Output Layer of the Classic LeNet-5.

MNIST Fashion-MNIST CIFAR-10

LeNet-5 0.76 ± 0.17 9.34 ± 0.57 36.42 ± 0.94
kLeNet-5 0.75 ± 0.17 8.67 ± 0.55 35.87 ± 0.94

Note: The kernelized model (kLeNet-5) was trained layer-wise.

Figure 4: Visualizing the data representation of the MNIST test set in the last
hidden layer of kLeNet-5 (left) and LeNet-5 (right). Each color corresponds to a
digit. Representations learned by kLeNet-5 are more discriminative for different
digits.

using Adam. The two networks were trained and tested on the unprepro-
cessed MNIST, Fashion-MNIST, and CIFAR-10 (Krizhevsky & Hinton, 2009)
data sets.

In Table 4, the results suggest that kernelization and the layer-wise algo-
rithm resulted in marginal accuracy increase in all data sets. We emphasize
that the layer-wise framework does not help the network learn intrinsically
superior hypotheses compared to the traditional end-to-end methods. In
that regard, it offers the same optimality guarantee as that provided by an
end-to-end method such as BP. We argue that the layer-wise framework is
promising because it is more lightweight and returns more information on
the training of the individual layers to the user, making possible new and
more flexible model selection and hyperparameter-tuning paradigms. This
could serve as a tentative step toward increasing the interpretability of deep
architectures.

Figure 4 provides more insights into the difference of kLeNet-5 and
LeNet-5, in which we plotted the activations of the last hidden layer of the
two models after PCA dimension reduction using the MNIST test set. In

On Kernel Networks and Deep Learning Without Backpropagation 121

particular, we see that the representations in the last hidden layer of
kLetNet-5 are much more discriminative for different digits than those
in the corresponding layer of LeNet-5. Note that since the two models
differed only in their output layers, this observation suggests that the layer-
wise training algorithm turns deep architectures into more efficient repre-
sentation learners, which may prove useful for computer vision tasks that
build on convolutional features (Gatys, Ecker, & Bethge, 2015; Gardner et
al., 2015).

7 Conclusion

In this letter, we first proposed a family of connectionist models based on
the kernel method and then presented a framework to train multilayer feed-
forward networks in a greedy, layer-by-layer fashion. Several instantiations
of the framework were provided and their optimality proven. Finally, we
described a certified layer-wise training algorithm for deep feedforward
architectures for classification based on the earlier instantiations. Empir-
ical results were provided to supplement our theory, in which our pro-
posed models and the layer-wise training algorithm compared favorably
with classical kernel machines, as well as other popular connectionist
models.

Appendix A: Experimental Setup

The data set rectangles has 1000 training images, 200 validation images,3 and
50,000 test images. The model is required to tell if a rectangle contained in
an image has a larger width or length. The location of the rectangle is ran-
dom. The border of the rectangle has a pixel value 255, and pixels in the
rest of an image all have value 0. rectangles-image is the same as rectangles
except that the inside and outside of the rectangle are replaced by an image
patch, respectively. rectangles-image has 10,000 training images, 2000 valida-
tion images, and 50,000 test images. convex consists of images in which there
are white regions (pixel value 255) on a black (pixel value 0) background.
The model needs to tell if the region is convex. This data set has 6000 train-
ing images, 2000 validation images, and 50,000 test images. mnist (50k test)
contains 10,000 training images, 2000 validation images, and 50,000 test im-
ages taken from the standard MNIST. mnist (50k test) rotated is the same as
the fourth except that the digits have been randomly rotated. For detailed
descriptions, of the data sets, see (Larochelle et al., 2007).

The experimental setup for the greedily trained kMLPs is as follows.
kMLP-1 corresponds to a one-hidden-layer kMLP with the first layer con-
sisting of 15 to 150 kernel machines using the same gaussian kernel and

3
The last 200 of the training set. Same for other data sets as well.

122 S. Duan, S. Yu, Y. Chen, and J. Principe

the second layer being a single or 10 (depending on the number of classes)
kernel machines using another gaussian kernel. Hyperparameters were se-
lected using the validation set. The validation set was then used in final
training only for early stopping based on validation error. For the standard
MNIST and Fashion-MNIST, the last 5000 training examples were held out
as a validation set. kMLP-1FAST is the same kMLP for which we accelerated
by randomly choosing a subset of the training set as centers for the second
layer after the first had been trained. The kMLP-2 and kMLP-2FAST are the
two-hidden-layer kMLPs, the second hidden layers of which contained 15
to 150 kernel machines. Settings of all the kMLPs trained with BP are in
Zhang et al. (2017). Note that because it is extremely time- and memory-
consuming to train kMLP-2 with BP without any acceleration method, to
make training possible, we could only randomly use 10,000 examples from
the entire training set of 55,000 examples as centers for the kMLP-2 (BP)
from Table 2.

In Table 3, we compared kMLP with a one- and two-hidden-layer MLP
(MLP-1/MLP-2), a one- and three-hidden-layer DBN (DBN-1/DBN-3), and
a three-hidden-layer SAE (SAE-3). For these models, hyperparameters were
also selected using the validation set. For the MLPs, the sizes of the hid-
den layers were chosen from the interval [25, 700]. All hyperparameters
involved in Adam, RMSProp, and BN were set to the suggested default
values in the corresponding papers. If used, dropout or BN was added to
the hidden layers, and the best probability for dropout was found using
the validation set. For DBN-3 and SAE-3, the sizes of the three hidden lay-
ers varied in intervals [500, 3000], [500, 4000] and [1000, 6000], respectively.
DBN-1 used a much larger hidden layer than DBN-3 to obtain comparable
performance. A simple calculation shows that the total number of param-
eters in the kMLPs were fewer than those in the corresponding DBNs and
SAEs by orders of magnitude in all experiments. As in the training for the
kMLPs, the validation set was also reserved for early stopping in final train-
ing. The DBNs and SAEs had been pretrained without supervision before
the supervised training phase, following the algorithms described in Hin-
ton et al. (2006); and Bengio et al. (2007). More detailed settings for these
models were reported in Larochelle et al. (2007).

Appendix B: Proofs

Lemma 2. Suppose f1 ∈ F1, . . . , fd ∈ Fd are elements from sets of real-valued
functions defined on R

p for some p ≥ 1, and F ⊂ F1 × · · · × Fd is a sub-
set of their direct sum. For f ∈ F, define ω ◦ f : Rp × · · · × R

p × R
q → R

as (x1, . . . , xm, y) �→ ω (f1 (x1) , . . . , fd (x1) , f1 (x2) , . . . , fd (xm) , y), where
x1, . . . , xm ∈ R

p, y ∈ R
q, and ω : Rmd × R

q → R is bounded and L-Lipschitz for
each y ∈ R

q with respect to the Euclidean metric on R
md. Let ω ◦ F = {ω ◦ f : f ∈

F}.

On Kernel Networks and Deep Learning Without Backpropagation 123

Define

G j
N (Fi) = EZn, X j

n

[
sup
f∈Fi

1
N

N∑
n=1

Zn f
(

X j
n

)]
, i = 1, . . . , d, j = 1, . . . , m,

where the X j
n are i.i.d. random vectors defined on R

p. We have

GN (ω ◦ F) ≤ 2L
d∑

i=1

m∑
j=1

G j
N (Fi) . (B.1)

In particular, if for all j, the X j
n on which the gaussian complexities of the Fi

are evaluated are sets of i.i.d. random vectors with the same distribution, we have
G1

N (Fi) = · · · = Gm
N (Fi) =: GN (Fi) for all i and equation B.1 becomes

GN (ω ◦ F) ≤ 2mL
d∑

i=1

GN (Fi) .

This lemma is a generalization of a result on the gaussian complexity
of Lipschitz functions on R

k from Bartlett and Mendelson (2002). The tech-
nique used in the following proof is also adapted from there.

Proof. For brevity, we prove the case where m = 2. The general case uses
the same technique except that the notations would be more cumbersome.

Let F be indexed by A. Without loss of generality, assume |A| < ∞.
Define

Tα =
N∑

n=1

ω
(

fα, 1 (Xn) , . . . , fα, d
(
X′

n

)
, Yn

)
Zn,

Vα = L
N∑

n=1

d∑
i=1

(
fα, i (Xn) Zn, i + fα, i

(
X′

n

)
ZN+n, i

)
,

where α ∈ A,
{
(Xn, X′

n) : n = 1, . . . , N
}

is a random sample of size N on
R

p × R
p and Z1, . . . , ZN, Z1, 1, . . . , Z2N, d are i.i.d. standard normal random

variables.
Let arbitrary α, β ∈ A be given, and define

∥∥Tα − Tβ

∥∥2
2 = E

(
Tα − Tβ

)2,

where the expectation is taken over the Zn. Define
∥∥Vα − Vβ

∥∥2
2 similarly, and

we have

∥∥Tα − Tβ

∥∥2
2 =

N∑
n=1

(
ω

(
fα, 1 (Xn) , . . . , fα, d

(
X′

n

)
, Yn

)

124 S. Duan, S. Yu, Y. Chen, and J. Principe

−ω
(

fβ, 1 (Xn) , . . . , fβ, d
(
X′

n

)
, Yn

))2

≤ L2
N∑

n=1

d∑
i=1

((
fα, i (Xn) − fβ, i (Xn)

)2

+ (
fα, i

(
X′

n

) − fβ, i
(
X′

n

))2
)

= ∥∥Vα − Vβ

∥∥2
2 .

By Slepian’s lemma (Pisier, 1999),

NĜN (ω ◦ F) = EZn sup
α∈A

Tα

≤ 2EZn, i, ZN+n, i sup
α∈A

Vα

≤ N2L
d∑

i=1

(
ĜN (Fi) + Ĝ ′

N (Fi)
)

.

Taking the expectation of the Xn, X′
n, Yn on both sides proves the result. �

Lemma 3. Given kernel k : Rd1 × R
d1 → R, let

F2 =
{

f : Rd1 → R, f (x) =
m∑

ν=1

ανk (xν, x) + b |

α = (α1, . . . , αm) ∈ R
m, ‖α‖1 ≤ A, b ∈ R

}
,

where the xν are an m-subset of SX .
Define F1 = {

(f1, . . . , fd1) : x �→ (f1 (x) , . . . , fd1 (x)) | x ∈ R
d0 , f j ∈ �

}
,

where � is a given hypothesis class of real-valued functions on R
d0 .

Also, define

F2 ◦ F1 =
{

h : x �→
m∑

ν=1

ανk (F (xν), F (x)) + b | x ∈ R
d0 ,

‖α‖1 ≤ A, b ∈ R, F ∈ F1

}
.

We have

GN (F2 ◦ F1) ≤ 2ALd1GN (�) .

On Kernel Networks and Deep Learning Without Backpropagation 125

Proof. First, note that the bias b does not change GN (F2 ◦ F1).

ĜN (F2 ◦ F1) = E sup
α, F

1
N

N∑
n=1

m∑
ν=1

ανk (F (xν), F (xn)) Zn

≤ E sup
α, F, yν∈Rd1

1
N

N∑
n=1

m∑
ν=1

ανk (yν, F (xn)) Zn.

Suppose the supremum over yν is attained at Yν , which are random vectors
because they are functions of the Zn.

Write

gν ◦ F (x) = k (F (x), Yν) ,

ω ◦ F (x) =
m∑

ν=1

ανgν ◦ F (x) =
m∑

ν=1

ανk (F (x), Yν) .

Then we have

ĜN (F2 ◦ F1) ≤ E sup
α, F

1
N

N∑
n=1

m∑
ν=1

ανk (Yν, F (xn)) Zn

= E sup
α, F

1
N

N∑
n=1

ω ◦ F (x) Zn

= ĜN (ω ◦ F1) .

We now prove a Lipschitz property for ω. For any ξ1, ξ2 ∈ R
d1 , we have

∣∣ω (ξ1) − ω (ξ2)
∣∣ =

∣∣∣∣∣
m∑

ν=1

αν (gν (ξ1) − gν (ξ2))

∣∣∣∣∣
≤

m∑
ν=1

|αν |
∣∣gν (ξ1) − gν (ξ2)

∣∣
≤ A max

ν

∣∣gν (ξ1) − gν (ξ2)
∣∣

= A max
ν

∣∣k (ξ1, Yν) − k (ξ2, Yν)
∣∣

≤ A max
ν

LYν
‖ξ1 − ξ2‖2

≤ AL ‖ξ1 − ξ2‖2 .

126 S. Duan, S. Yu, Y. Chen, and J. Principe

Therefore, ω ◦ F (x), as a function of F (x), is Lipschitz with regard to the
Euclidean metric on R

d1 with Lipschitz constant at most AL. It is easy to
check that ω is bounded. Now the desired result follows from lemma 2. �
Proof of Proposition 1. The result follows from repeatedly applying
lemma 3. �
Proof of Lemma 1. Let G1 = arg minF1∈F′

1
minF2∈F′

2
R̃ (F2 ◦ F1), G2 =

arg minF2∈F′
2
R̃ (F2 ◦ G1).

Suppose F�
1 �= G1:

R̃ (G2 ◦ G1) = min
F2∈F′

2

R̃ (F2 ◦ G1) (definition of G2)

< min
F2∈F′

2

R̃ (F2 ◦ F�
1) (definition of G1 and F�

1 �= G1)

= R̃ (F�
2 ◦ F�

1) . (definition of F�
2)

However, this contradicts the optimality of F�
2 ◦ F�

1. �
Proof of Theorem 1. Let F

′
1 be the class of all F′

1 such that for any
f2 ∈ arg min f2∈F2

R̃
(

f2 ◦ F′
1

)
, there exist (x+, y+) , (x−, y−) ∈ S such that

�
(

f2 ◦ F′
1, (xn, yn)

) = 0, n = +, −.
Observe that F�

1 ∈ F
′
1 since any f2 ∈ arg min f2∈F2

R̃
(

f2 ◦ F�
1

)
is easily

shown to be f �
2 .

Now suppose F◦
1 satisfies equation 4.1. If we show F◦

1 ∈ F
′
1 and that for

any F′
1 ∈ F

′
1, we have

min
f2∈F2

R̃
(

f2 ◦ F′
1

) ≥ min
f2∈F2

R̃ (f2 ◦ F◦
1) .

Then by lemma 1, F◦
1 = F�

1.
We now start the formal proof. Note that we drop the layer indices 1

and 2 for brevity, which will cause no confusion since the output layer
will be denoted by f and the input layer F. We assume that F◦ satisfies
equation 4.1. Let f ◦ ∈ arg min f∈F2

R̃ (f ◦ F◦). Let F′ ∈ F
′
1 be given and also

let f ′ ∈ arg min f∈F2
R̃ (f ◦ F′).

Claim 1.

∥∥φ (x)
∥∥

H = √
c, ∀x ∈ R

d1 .

Proof of Claim 1.

c = k (x, x) = 〈
φ (x), φ (x)

〉
H = ∥∥φ (x)

∥∥2
H ,

which implies
∥∥φ (x)

∥∥
H = √

c. This completes the proof of claim 1. �

On Kernel Networks and Deep Learning Without Backpropagation 127

Claim 2.

φ (F◦ (x)) = φ
(
F◦ (

x′)) , ∀x, x′ ∈ SX with y = y′.

φ (F◦ (x+)) = φ (F◦ (x−)) , ∀x+, x− ∈ SX.

Proof of Claim 2. By Cauchy-Schwarz inequality and claim 1,

0 < c = k
(
F◦ (x), F◦ (

x′))
= 〈

φ (F◦ (x)), φ
(
F◦ (

x′))〉
H ≤ ∥∥φ (F◦ (x))

∥∥
H

∥∥φ
(
F◦ (

x′))∥∥
H = c.

So the equality holds in Cauchy-Schwarz and we have φ (F◦ (x)) =
pφ (F◦ (x′)) for some p > 0. Again by claim 1, p = 1.

The second part of this claim follows from k (F◦ (x+), F◦ (x−)) = a �= c.
This completes the proof of claim 2. �
Claim 3. For any x+, x− ∈ SX and any F : Rd0 → R

d1 ,

√
2(c − a) = ∥∥φ (F◦ (x+)) − φ (F◦ (x−))

∥∥
H ≥ ∥∥φ (F (x+)) − φ (F (x−))

∥∥
H .

Proof of Claim 3.

∥∥φ (F◦ (x+)) − φ (F◦ (x−))
∥∥2

H

= ∥∥φ (F◦ (x+))
∥∥2

H + ∥∥φ (F◦ (x−))
∥∥2

H − 2
〈
φ (F◦ (x+)), φ (F◦ (x−))

〉
H

= c + c − 2k (F◦ (x+), F◦ (x−))

= 2c − 2a

≥ 2c − 2k (F (x+), F (x−))

= ∥∥φ (F (x+))
∥∥2

H + ∥∥φ (F (x−))
∥∥2

H − 2
〈
φ (F (x+)), φ (F (x−))

〉
H

= ∥∥φ (F (x+)) − φ (F (x−))
∥∥2

H

This completes the proof of claim 3. �
Claim 4.

R̃ (f ◦ ◦ F◦) = τ
∥∥w f ◦

∥∥
H = 2τ∥∥φ (F◦ (x+)) − φ (F◦ (x−))

∥∥
H

, ∀x+, x− ∈ SX.

Proof of Claim 4.

R̃ (f ◦ ◦ F◦)

= 1
N

N∑
n=1

max (0, 1 − yn f ◦ (F◦ (xn))) + τ
∥∥w f ◦

∥∥
H

128 S. Duan, S. Yu, Y. Chen, and J. Principe

= κ max (0, 1 − y+ f ◦ (F◦ (x+)))

+ (1 − κ) max (0, 1 − y− f ◦ (F◦ (x−))) + τ
∥∥w f ◦

∥∥
H ,

for any pair of x+, x− ∈ SX. Let

ζ f ◦ = y+ f ◦ (F◦ (x+)) + y− f ◦ (F◦ (x−))

= ∥∥w f ◦
∥∥

H

∥∥φ (F◦ (x+)) − φ (F◦ (x−))
∥∥

H cos θ f ◦ .

We have

R̃ (f ◦ ◦ F◦) = κ max(0, 1 − t f ◦) + (1 − κ) max(0, 1 − (ζ f ◦ − t f ◦))

+ τ
∥∥w f ◦

∥∥
H ,

where t f ◦ = f ◦ (F◦ (x+)).
Note that by definition of f ◦,

R̃ (f ◦ ◦ F◦) = min
f

R̃ (f ◦ F◦)

= min
ζ f , t f ,‖w f ‖H

κ max(0, 1 − t f)

+ (1 − κ) max(0, 1 − (ζ f − t f)) + τ
∥∥w f

∥∥
H .

There are four possible cases that the terms inside the minimum operator
can be simplified to:

1. If 1 ≥ t f ≥ ζ f − 1, ζ f ≤ 2, to 1 − (1 − κ)ζ f + (1 − 2κ)t f + τ
∥∥w f

∥∥
H .

2. If t f ≥ max(1, ζ f − 1), to (1 − κ)(1 − ζ f + t f) + τ
∥∥w f

∥∥
H .

3. If t f ≤ min(1, ζ f − 1), to κ (1 − t f) + τ
∥∥w f

∥∥
H .

4. If 1 ≤ t f ≤ ζ f − 1, ζ f ≥ 2, to τ
∥∥w f

∥∥
H .

If ζ f ≥ 2, for each fixed ζ f ,
∥∥w f

∥∥
H , t f , we have that the values of R̃ in

cases 2 and 3 are no less than that in case 4 and that their minima agree.
Therefore, when ζ f ≥ 2, R̃ (f ◦ ◦ F◦) = τ

∥∥w f ◦
∥∥

H .
But, if ζ f ≤ 2, then for each fixed ζ f ,

∥∥w f
∥∥

H , first note that t f ∈ R can be
chosen freely by adjusting b. Also, since max(1, ζ f − 1) = 1 and min(1, ζ f −
1) = ζ − 1, by working out the minima over t f in cases 1 to 3, respectively,
we have R̃ (f ◦ ◦ F◦) = min(κ, 1 − κ)(2 − ζ f ◦) + τ

∥∥w f ◦
∥∥

H .
Note that we have ζ f ◦ = ∥∥w f ◦

∥∥
H ψ◦ cos θ f ◦ , where ψ◦ = ‖φ (F◦ (x+)) −

φ (F◦ (x−)) ‖H . We can rewrite the earlier result in terms of ζ f ◦ and cos θ f ◦ .
Consequently, we now determine the minimum over ζ f and cos θ f of the
resulting expression.

To this end, first observe that for each ζ f , one can choose cos θ f ∈ [−1, 1]
freely by adjusting

∥∥w f
∥∥

H under the constraint that the two quantities must
be of the same sign if both are nonzero. Therefore, for each ζ f ≥ 2,

On Kernel Networks and Deep Learning Without Backpropagation 129

min
cos θ f

R̃ (f ◦ F◦) = R̃ (f ◦ F◦) |cos θ f =1=
τζ f

ψ◦ .

Similarly, for each ζ f ≤ 2, we have mincos θ f R̃ (f ◦ F◦) = min(κ, 1 − κ)(2 −
ζ f) + τ

∣∣ζ f
∣∣ /ψ◦.

Combining these two cases and using the assumption on τ , it is easy to
see that R̃ (f ◦ ◦ F◦) = minζ f R̃ (f ◦ F◦) = R̃ (f ◦ F◦) |ζ f =2= 2τ/ψ◦. This com-
pletes the proof of claim 4. �
Remark 1. By claim 4, F◦ ∈ F

′
1.

Claim 5. For any F
′ ∈ F

′
1, min f∈F2 R̃

(
f ◦ F

′) ≥ min f∈F2 R̃ (f ◦ F◦).

Proof of Claim 5. By claim 4, it amounts to prove

R̃
(

f ′ ◦ F
′) ≥ 2τ∥∥φ (F◦ (x+)) − φ (F◦ (x−))

∥∥
H

,

for an arbitrary pair of x+, x− ∈ SX. Suppose (x
′
+, y′

+), (x
′
−, y′

−) are a pair
of examples with x

′
+, x

′
− ∈ SX, and �

(
f ′ ◦ F

′
, (x

′
n, y′

n)
) = 0, n = +, −. Then

we have y′
+ f

′ (
x

′
+
) + y′

− f
′ (

x
′
−
) ≥ 2.

Since y′
+ f

′ (
x

′
+
) + y′

− f
′ (

x
′
−
) = ∥∥w f ′

∥∥
H

∥∥φ
(
F

′ (
x

′
+
)) − φ

(
F

′ (
x

′
−
))∥∥

H cos θ f ′ ,
it is implied that cos θ f ′ ∈ (0, 1] ,

∥∥φ
(
F

′ (
x

′
+
)) − φ

(
F

′ (
x

′
−
))∥∥

H > 0 and∥∥w f ′
∥∥

H ≥ 2/
∥∥φ

(
F

′ (
x

′
+
)) − φ

(
F

′ (
x

′
−
))∥∥

H . Therefore,

R̃
(

f ′ ◦ F
′) ≥ τ

∥∥w f ′
∥∥

H

≥ 2τ∥∥φ
(
F′ (x′

+
)) − φ

(
F′ (x′

−
))∥∥

H

≥ 2τ∥∥φ
(
F◦ (

x′
+
)) − φ

(
F◦ (

x′
−
))∥∥

H

= R̃ (f ◦ ◦ F◦) .

�

This concludes the proof of claim 5 and theorem 1. �
Proof of Theorem 2. Denote with F

′
2 the set of all F′

2 such that for all j,∥∥∥w f j′
2

∥∥∥
H

> 0.

Denote with F
′
1 the set of all F′

1 such that for any F2 ∈
arg minF2∈F′

2
R̃

(
F2 ◦ F′

1

)
. F2 satisfies

∃(x+, y+), (x−, y−) ∈ SX × SY s.t. �
(
F2 ◦ F′

1, (x+, y+), (x−, y−)
) = 0.

130 S. Duan, S. Yu, Y. Chen, and J. Principe

Using the same argument as in the beginning of the proof of theorem 1,
we have F�

1 ∈ F
′
1. Let F′

1 ∈ F
′
1 be given and suppose F◦

1 satisfies equation 4.2.
Let

F′
2 ∈ arg min

F2∈F′
2

R̃
(
F2 ◦ F′

1

)
, and F◦

2 ∈ arg min
F2∈F′

2

R̃ (F2 ◦ F◦
1) .

Then by lemma 1, the proof is complete if we can show R̃
(
F′

2 ◦ F′
1

) ≥
R̃

(
F◦

2 ◦ F◦
1

)
.

To this end, first note that claims 1, 2, and 3 from the proof of theorem 1
evidently hold here as well. Define ψ = 1/N2 ∑N

n, m=1 1{ym �=yn}.

Claim 6. F◦
2 (x) = F◦

2 (x′) ,∀x, x′ ∈ SX with y = y′.

Proof of Claim 6. ∀x, x′ ∈ SX,

F◦
2 (x) − F◦

2

(
x′) = (

f 1◦
2 (x) − f 1◦

2

(
x′) , . . .

)
=

(〈
w f 1◦

2
, φ (F◦

1 (x)) − φ
(
F◦

1

(
x′))〉

H
, . . .

)
= (0, . . .),

where we have used claim 2 for the last equality. This completes the proof
of claim 6. �

Combining this claim with our earlier assumptions on h, we can simplify
the objective function

R̃ (F◦
2 ◦ F◦

1) = ψ
(

h
(∥∥F◦

2 (x+) − F◦
2 (x−)

∥∥
q

)
− b

)p

+ τt
(∥∥∥w f 1◦

2

∥∥∥
H

, . . . ,

∥∥∥w
f

d2◦
2

∥∥∥
H

)
,

where x+, x− ∈ SX are arbitrary.
Rewrite the above expression as

R̃ (F◦
2 ◦ F◦

1)

= ψ

⎛
⎝h

⎛
⎝

⎛
⎝ d2∑

j

∥∥∥w f j◦
2

∥∥∥q

H

∥∥φ (F◦
1 (x+))

−φ (F◦
1 (x−))

∥∥q
H

(
cos θ f j◦

2

)q)1/q
)

− b
)p

+ t
(∥∥∥w f 1◦

2

∥∥∥
H

, . . . ,

∥∥∥w
f

d2◦
2

∥∥∥
H

)

Claim 7.
(

cos θ f j◦
2

)2
= 1, ∀ j.

On Kernel Networks and Deep Learning Without Backpropagation 131

Proof of Claim 7. This claim follows from noting that for each
∥∥∥w f j

2

∥∥∥
H

,(
cos θ f j

2

)2
may be chosen freely, and since the

∥∥∥w f j
2

∥∥∥
H

are nonzero by the

definition of F′
2, it is easy to see that the unique minimizers of the

(
cos θ f j

2

)2

are
(

cos θ f j
2

)2
= 1, ∀ j. This completes the proof of claim 7. �

Using claim 3 and the above claim, we further simplify the objective
function into

R̃ (F◦
2 ◦ F◦

1) = ψ

⎛
⎜⎝h

⎛
⎜⎝√

2(c − a)

⎛
⎝ d2∑

j

∥∥∥w f j◦
2

∥∥∥q

H

⎞
⎠

1/q
⎞
⎟⎠ − b

⎞
⎟⎠

p

+ τt
(∥∥∥w f 1◦

2

∥∥∥
H

, . . . ,

∥∥∥w
f

d2◦
2

∥∥∥
H

)

= min
w

f
j

2

ψ

⎛
⎜⎝h

⎛
⎜⎝√

2(c − a)

⎛
⎝ d2∑

j

∥∥∥w f j
2

∥∥∥q

H

⎞
⎠

1/q
⎞
⎟⎠ − b

⎞
⎟⎠

p

+ τt
(∥∥∥w f 1

2

∥∥∥
H

, . . . ,

∥∥∥w
f

d2
2

∥∥∥
H

)

Now, let
(
x′

+, x′
−
) ∈

{
arg maxx+, x−∈SX

∥∥F′
2 (x+) − F′

2 (x−)
∥∥

q

}
, we have

R̃
(
F′

2 ◦ F′
1

)
≥ ψ

(
h

(∥∥F′
2

(
x′

+
) − F′

2

(
x′

−
)∥∥

q

)
− b

)p
+ τt

(∥∥∥w f 1′
2

∥∥∥
H

, . . . ,

∥∥∥w
f

d2 ′
2

∥∥∥
H

)

≥ ψ

⎛
⎜⎝h

⎛
⎜⎝∥∥φ

(
F′

1

(
x′

+
)) − φ

(
F′

1

(
x′

−
))∥∥

H

⎛
⎝ d2∑

j=1

∥∥∥w f j′
2

∥∥∥q

H

⎞
⎠

1/q
⎞
⎟⎠ − b

⎞
⎟⎠

p

+τt
(∥∥∥w f 1′

2

∥∥∥
H

, . . . ,

∥∥∥w
f

d2 ′
2

∥∥∥
H

)

≥ ψ

⎛
⎜⎝h

⎛
⎜⎝√

2(c − a)

⎛
⎝ d2∑

j=1

∥∥∥w f j′
2

∥∥∥q

H

⎞
⎠

1/q
⎞
⎟⎠ − b

⎞
⎟⎠

p

+ τt
(∥∥∥w f 1′

2

∥∥∥
H

, . . . ,

∥∥∥w
f

d2 ′
2

∥∥∥
H

)
≥ R̃ (F◦

2 ◦ F◦
1) .

This concludes the proof of theorem 2. �

132 S. Duan, S. Yu, Y. Chen, and J. Principe

Acknowledgments

This work was supported by DARPA (FA9453-18-1-0039) and NSF DMS
(1719932).

References

Bach, F. R., Lanckriet, G. R., & Jordan, M. I. (2004). Multiple kernel learning, conic
duality, and the SMO algorithm. In Proceedings of the Twenty-First International
Conference on Machine Learning (p. 6). New York: ACM.

Balduzzi, D., Vanchinathan, H., & Buhmann, J. M. (2015). Kickback cuts backprop’s
red-tape: Biologically plausible credit assignment in neural networks. In Proceed-
ings of the 29th Conference on Artificial Intelligence (pp. 485–491). Palo Alto: AAAI.

Bartlett, P. L., & Mendelson, S. (2002). Rademacher and Gaussian complexities:
Risk bounds and structural results. Journal of Machine Learning Research, 3, 463–
482.

Bengio, Y. (2014). How auto-encoders could provide credit assignment in deep networks via
target propagation. arXiv:1407.7906.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and
new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(8), 1798–1828.

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise train-
ing of deep networks. In B. Schölkopf, J. C. Platt, & T. Hoffman (Eds.), Advances
in neural information processing systems, 19 (pp. 153–160). Cambridge, MA: MIT
Press.

Carreira-Perpinan, M., & Wang, W. (2014). Distributed optimization of deeply nested
systems. In Proceedings of the 17th International Conference on Artificial Intelligence
and Statistics, 22 (pp. 10–19).

Cho, Y., & Saul, L. K. (2009). Kernel methods for deep learning. In Y. Bengio, D.
Schuurmans, J. D. Lafferty, C. K. I. Williams, & A. Culotte (Eds.), Advances in
neural information processing systems (pp. 342–350). Cambridge, MA: MIT Press.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3),
273–297.

Cristianini, N., Shawe-Taylor, J., Elisseeff, A., & Kandola, J. S. (2002). On kernel-target
alignment. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in
neural information processing systems, 14 (pp. 367–373). Cambridge, MA: MIT Press.

Erdogmus, D., Fontenla-Romero, O., Principe, J. C., Alonso-Betanzos, A., & Castillo,
E. (2005). Linear-least-squares initialization of multilayer perceptrons through
backpropagation of the desired response. IEEE Transactions on Neural Networks,
16(2), 325–337.

Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learning architecture.
In D. S. Touretzky (Ed.), Advances in neural information processing systems, 2 (pp.
524–532). San Mateo, CA: Morgan Kaufmann.

Gardner, J. R., Upchurch, P., Kusner, M. J., Li, Y., Weinberger, K. Q., Bala, K., &
Hopcroft, J. E. (2015). Deep manifold traversal: Changing labels with convolutional
features. arXiv:1511.06421.

On Kernel Networks and Deep Learning Without Backpropagation 133

Gatys, L. A., Ecker, A. S., & Bethge, M. (2015). A neural algorithm of artistic style.
arXiv:1508.06576.

Gehler, P., & Nowozin, S. (2008). Infinite kernel learning (Technical Report TR-178).
Baden-Wurttemberg: Max Planck Institute for Biological Cybernetics.

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks.
In Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics (pp. 315–323).

Gönen, M., & Alpaydın, E. (2011). Multiple kernel learning algorithms. Journal of
Machine Learning Research, 12, 2211–2268.

Hermans, M., & Schrauwen, B. (2012). Recurrent kernel machines: Computing with
infinite echo state networks. Neural Computation, 24(1), 104–133.

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep
belief nets. Neural Computation, 18(7), 1527–1554.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data
with neural networks. Science, 313(5786), 504–507.

Huang, F. J., & LeCun, Y. (2006). Large-scale learning with SVM and convolutional
for generic object categorization. In Proceedings of the 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (Vol. 1, pp. 284–291). Piscat-
away, NJ: IEEE.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv:1502.03167.

Jaderberg, M., Czarnecki, W. M., Osindero, S., Vinyals, O., Graves, A., Silver, D.,
& Kavukcuoglu, K. (2016). Decoupled neural interfaces using synthetic gradients.
arXiv:1608.05343.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv:1412.6980.

Kloft, M., Brefeld, U., Sonnenburg, S., & Zien, A. (2011). LP-norm multiple kernel
learning. Journal of Machine Learning Research, 12, 953–997.

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images
(Tech. Rep.). Citeseer.

Lanckriet, G. R., Cristianini, N., Bartlett, P., Ghaoui, L. E., & Jordan, M. I. (2004).
Learning the kernel matrix with semidefinite programming. Journal of Machine
Learning Research, 5, 27–72.

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., & Bengio, Y. (2007). An empirical
evaluation of deep architectures on problems with many factors of variation. In
Proceedings of the 24th International Conference on Machine Learning (pp. 473–480).
New York: ACM.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

LeCun, Y., Cortes, C., & Burges, C. (2010). MNIST handwritten digit database. AT&T
Labs. http://yann. lecun.com/exdb/mnist.

Lee, D.-H., Zhang, S., Fischer, A., & Bengio, Y. (2015). Difference target propagation.
In Proceedings of the Joint European Conference on Machine Learning and Knowledge
Discovery in Databases (pp. 498–515). Berlin: Springer.

Mairal, J., Koniusz, P., Harchaoui, Z., & Schmid, C. (2014). Convolutional kernel net-
works. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q. Wein-
berger (Eds.), Advances in neural information processing systems, 27 (pp. 2627–2635).
Red Hook, NY: Curran.

134 S. Duan, S. Yu, Y. Chen, and J. Principe

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5(4), 115–133.

Micchelli, C. A., Xu, Y., & Zhang, H. (2006). Universal kernels. Journal of Machine
Learning Research, 7, 2651–2667.

Park, J., & Sandberg, I. W. (1991). Universal approximation using radial-basis-
function networks. Neural Computation, 3(2), 246–257.

Paszke, A., Gross, S., Chintala, S., & Chanan, G. (2017). Pytorch: Tensors and dy-
namic neural networks in Python with strong GPU acceleration. https://github.com
/pytorch/pytorch

Pisier, G. (1999). The volume of convex bodies and banach space geometry. Cambridge:
Cambridge University Press.

Raghu, M., Gilmer, J., Yosinski, J., & Sohl-Dickstein, J. (2017). SVCCA: Singular vec-
tor canonical correlation analysis for deep learning dynamics and interpretability.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, &
R. Garnett (Eds.), Advances in neural information processing systems, 30 (pp. 6076–
6085). Red Hook, NY: Curran.

Rahimi, A., & Recht, B. (2008). Random features for large-scale kernel machines. In
J. C. Platt, D. Koller, Y. Singer, & S. T. Roweis (Eds.), Advances in neural information
processing systems, 20 (pp. 1177–1184). Cambridge, MA: MIT Press.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323(6088), 533–538.

Schölkopf, B., Herbrich, R., & Smola, A. J. (2001). A generalized representer theorem.
In D. Helmbold & B. Williamson (Eds.), Computational learning theory (pp. 416–
426). Berlin: Springer.

Schölkopf, B., & Smola, A. J. (2001). Learning with kernels: Support vector machines,
regularization, optimization, and beyond. Cambridge, MA: MIT Press.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(1), 1929–1958.

Sun, S., Chen, W., Wang, L., Liu, X., & Liu, T.-Y. (2016). On the depth of deep neural
networks: A theoretical view. In Proceedings of the 30th AAAI Conference on Artifi-
cial Intelligence (pp. 2066–2072). Palo Alto, CA: AAAI.

Suykens, J. A. (2017). Deep restricted kernel machines using conjugate feature dual-
ity. Neural Computation, 29(8), 2123–2163.

Suykens, J. A., & Vandewalle, J. (1999). Training multilayer perceptron classifiers
based on a modified support vector method. IEEE Transactions on Neural Networks,
10(4), 907–911.

Tang, Y. (2013). Deep learning using linear support vector machines. arXiv:1306.0239.
Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop, coursera: Neural networks for

machine learning (Technical Report). Toronto: University of Toronto.
Vapnik, V. (2000). The nature of statistical learning theory. Berlin: Springer.
Varma, M., & Babu, B. R. (2009). More generality in efficient multiple kernel learning.

In Proceedings of the 26th Annual International Conference on Machine Learning (pp.
1065–1072). New York: ACM.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P. A. (2010). Stacked
denoising autoencoders: Learning useful representations in a deep network with
a local denoising criterion. Journal of Machine Learning Research, 11, 3371–3408.

On Kernel Networks and Deep Learning Without Backpropagation 135

Wilson, A. G., Hu, Z., Salakhutdinov, R., & Xing, E. P. (2016). Deep kernel learning. In
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics
(pp. 370–378).

Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-MNIST: A novel image dataset for
benchmarking machine learning algorithms. arXiv:1708.07747.

Xu, Z., Jin, R., King, I., & Lyu, M. (2009). An extended level method for efficient
multiple kernel learning. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou
(Eds.), Advances in neural information processing systems, 21 (pp. 1825–1832). Red
Hook, NY: Curran.

Zhang, S., Li, J., Xie, P., Zhang, Y., Shao, M., Zhou, H., & Yan, M. (2017). Stacked kernel
network. arXiv:1711.09219.

Zhou, Z.-H., & Feng, J. (2017). Deep forest: Towards an alternative to deep neural networks.
arXiv:1702.08835.

Zhuang, J., Tsang, I. W., & Hoi, S. C. (2011). Two-layer multiple kernel learning. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics (pp. 909–917).

Received April 29, 2019; accepted September 2, 2019.

